Extensions 1→N→G→Q→1 with N=C252C8 and Q=C2

Direct product G=N×Q with N=C252C8 and Q=C2

Semidirect products G=N:Q with N=C252C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C252C81C2 = D4.D25φ: C2/C1C2 ⊆ Out C252C82004-C25:2C8:1C2400,15
C252C82C2 = D4⋊D25φ: C2/C1C2 ⊆ Out C252C82004+C25:2C8:2C2400,16
C252C83C2 = Q8⋊D25φ: C2/C1C2 ⊆ Out C252C82004+C25:2C8:3C2400,18
C252C84C2 = C8⋊D25φ: C2/C1C2 ⊆ Out C252C82002C25:2C8:4C2400,6
C252C85C2 = C4.Dic25φ: C2/C1C2 ⊆ Out C252C82002C25:2C8:5C2400,10
C252C86C2 = C8×D25φ: trivial image2002C25:2C8:6C2400,5

Non-split extensions G=N.Q with N=C252C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C252C8.1C2 = C25⋊Q16φ: C2/C1C2 ⊆ Out C252C84004-C25:2C8.1C2400,17
C252C8.2C2 = C25⋊C16φ: C2/C1C2 ⊆ Out C252C84004C25:2C8.2C2400,3