Extensions 1→N→G→Q→1 with N=C2xC102 and Q=C2

Direct product G=NxQ with N=C2xC102 and Q=C2
dρLabelID
C22xC102408C2^2xC102408,46

Semidirect products G=N:Q with N=C2xC102 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC102):1C2 = D4xC51φ: C2/C1C2 ⊆ Aut C2xC1022042(C2xC102):1C2408,31
(C2xC102):2C2 = C51:7D4φ: C2/C1C2 ⊆ Aut C2xC1022042(C2xC102):2C2408,29
(C2xC102):3C2 = C22xD51φ: C2/C1C2 ⊆ Aut C2xC102204(C2xC102):3C2408,45
(C2xC102):4C2 = C3xC17:D4φ: C2/C1C2 ⊆ Aut C2xC1022042(C2xC102):4C2408,19
(C2xC102):5C2 = C2xC6xD17φ: C2/C1C2 ⊆ Aut C2xC102204(C2xC102):5C2408,43
(C2xC102):6C2 = C17xC3:D4φ: C2/C1C2 ⊆ Aut C2xC1022042(C2xC102):6C2408,24
(C2xC102):7C2 = S3xC2xC34φ: C2/C1C2 ⊆ Aut C2xC102204(C2xC102):7C2408,44

Non-split extensions G=N.Q with N=C2xC102 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC102).1C2 = C2xDic51φ: C2/C1C2 ⊆ Aut C2xC102408(C2xC102).1C2408,28
(C2xC102).2C2 = C6xDic17φ: C2/C1C2 ⊆ Aut C2xC102408(C2xC102).2C2408,18
(C2xC102).3C2 = Dic3xC34φ: C2/C1C2 ⊆ Aut C2xC102408(C2xC102).3C2408,23

׿
x
:
Z
F
o
wr
Q
<