Extensions 1→N→G→Q→1 with N=C13×D8 and Q=C2

Direct product G=N×Q with N=C13×D8 and Q=C2
dρLabelID
D8×C26208D8xC26416,193

Semidirect products G=N:Q with N=C13×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C13×D8)⋊1C2 = C13⋊D16φ: C2/C1C2 ⊆ Out C13×D82084+(C13xD8):1C2416,33
(C13×D8)⋊2C2 = D8×D13φ: C2/C1C2 ⊆ Out C13×D81044+(C13xD8):2C2416,131
(C13×D8)⋊3C2 = D83D13φ: C2/C1C2 ⊆ Out C13×D82084-(C13xD8):3C2416,133
(C13×D8)⋊4C2 = D8⋊D13φ: C2/C1C2 ⊆ Out C13×D81044(C13xD8):4C2416,132
(C13×D8)⋊5C2 = C13×D16φ: C2/C1C2 ⊆ Out C13×D82082(C13xD8):5C2416,61
(C13×D8)⋊6C2 = C13×C8⋊C22φ: C2/C1C2 ⊆ Out C13×D81044(C13xD8):6C2416,197
(C13×D8)⋊7C2 = C13×C4○D8φ: trivial image2082(C13xD8):7C2416,196

Non-split extensions G=N.Q with N=C13×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C13×D8).1C2 = D8.D13φ: C2/C1C2 ⊆ Out C13×D82084-(C13xD8).1C2416,34
(C13×D8).2C2 = C13×SD32φ: C2/C1C2 ⊆ Out C13×D82082(C13xD8).2C2416,62

׿
×
𝔽