Extensions 1→N→G→Q→1 with N=C13×Q16 and Q=C2

Direct product G=N×Q with N=C13×Q16 and Q=C2
dρLabelID
Q16×C26416Q16xC26416,195

Semidirect products G=N:Q with N=C13×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C13×Q16)⋊1C2 = C8.6D26φ: C2/C1C2 ⊆ Out C13×Q162084+(C13xQ16):1C2416,35
(C13×Q16)⋊2C2 = Q16×D13φ: C2/C1C2 ⊆ Out C13×Q162084-(C13xQ16):2C2416,138
(C13×Q16)⋊3C2 = D104⋊C2φ: C2/C1C2 ⊆ Out C13×Q162084+(C13xQ16):3C2416,140
(C13×Q16)⋊4C2 = Q16⋊D13φ: C2/C1C2 ⊆ Out C13×Q162084(C13xQ16):4C2416,139
(C13×Q16)⋊5C2 = C13×SD32φ: C2/C1C2 ⊆ Out C13×Q162082(C13xQ16):5C2416,62
(C13×Q16)⋊6C2 = C13×C8.C22φ: C2/C1C2 ⊆ Out C13×Q162084(C13xQ16):6C2416,198
(C13×Q16)⋊7C2 = C13×C4○D8φ: trivial image2082(C13xQ16):7C2416,196

Non-split extensions G=N.Q with N=C13×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C13×Q16).1C2 = C13⋊Q32φ: C2/C1C2 ⊆ Out C13×Q164164-(C13xQ16).1C2416,36
(C13×Q16).2C2 = C13×Q32φ: C2/C1C2 ⊆ Out C13×Q164162(C13xQ16).2C2416,63

׿
×
𝔽