Extensions 1→N→G→Q→1 with N=C2 and Q=D13.D4

Direct product G=N×Q with N=C2 and Q=D13.D4
dρLabelID
C2×D13.D4104C2xD13.D4416,211


Non-split extensions G=N.Q with N=C2 and Q=D13.D4
extensionφ:Q→Aut NdρLabelID
C2.1(D13.D4) = D26⋊C8central extension (φ=1)208C2.1(D13.D4)416,78
C2.2(D13.D4) = D26.Q8central extension (φ=1)104C2.2(D13.D4)416,81
C2.3(D13.D4) = C26.M4(2)central extension (φ=1)208C2.3(D13.D4)416,87
C2.4(D13.D4) = D26.D4central stem extension (φ=1)1044+C2.4(D13.D4)416,74
C2.5(D13.D4) = Dic13.D4central stem extension (φ=1)2084-C2.5(D13.D4)416,80
C2.6(D13.D4) = D521C4central stem extension (φ=1)1048+C2.6(D13.D4)416,82
C2.7(D13.D4) = Dic26⋊C4central stem extension (φ=1)1048-C2.7(D13.D4)416,83
C2.8(D13.D4) = D13.Q16central stem extension (φ=1)1048-C2.8(D13.D4)416,84
C2.9(D13.D4) = D52⋊C4central stem extension (φ=1)1048+C2.9(D13.D4)416,85
C2.10(D13.D4) = D26.4D4central stem extension (φ=1)1044C2.10(D13.D4)416,86
C2.11(D13.D4) = Dic13.4D4central stem extension (φ=1)1044C2.11(D13.D4)416,88

׿
×
𝔽