Extensions 1→N→G→Q→1 with N=D42D13 and Q=C2

Direct product G=N×Q with N=D42D13 and Q=C2

Semidirect products G=N:Q with N=D42D13 and Q=C2
extensionφ:Q→Out NdρLabelID
D42D131C2 = D8⋊D13φ: C2/C1C2 ⊆ Out D42D131044D4:2D13:1C2416,132
D42D132C2 = D83D13φ: C2/C1C2 ⊆ Out D42D132084-D4:2D13:2C2416,133
D42D133C2 = D26.6D4φ: C2/C1C2 ⊆ Out D42D132084D4:2D13:3C2416,137
D42D134C2 = D46D26φ: C2/C1C2 ⊆ Out D42D131044D4:2D13:4C2416,218
D42D135C2 = D4.10D26φ: C2/C1C2 ⊆ Out D42D132084-D4:2D13:5C2416,224
D42D136C2 = C4○D4×D13φ: trivial image1044D4:2D13:6C2416,222

Non-split extensions G=N.Q with N=D42D13 and Q=C2
extensionφ:Q→Out NdρLabelID
D42D13.1C2 = D4.D26φ: C2/C1C2 ⊆ Out D42D132084-D4:2D13.1C2416,136
D42D13.2C2 = Dic26⋊C4φ: C2/C1C2 ⊆ Out D42D131048-D4:2D13.2C2416,83
D42D13.3C2 = Dic26.C4φ: C2/C1C2 ⊆ Out D42D132088-D4:2D13.3C2416,205