Extensions 1→N→G→Q→1 with N=C2 and Q=D4×C26

Direct product G=N×Q with N=C2 and Q=D4×C26
dρLabelID
D4×C2×C26208D4xC2xC26416,228


Non-split extensions G=N.Q with N=C2 and Q=D4×C26
extensionφ:Q→Aut NdρLabelID
C2.1(D4×C26) = C22⋊C4×C26central extension (φ=1)208C2.1(D4xC26)416,176
C2.2(D4×C26) = C4⋊C4×C26central extension (φ=1)416C2.2(D4xC26)416,177
C2.3(D4×C26) = D4×C52central extension (φ=1)208C2.3(D4xC26)416,179
C2.4(D4×C26) = C13×C22≀C2central stem extension (φ=1)104C2.4(D4xC26)416,181
C2.5(D4×C26) = C13×C4⋊D4central stem extension (φ=1)208C2.5(D4xC26)416,182
C2.6(D4×C26) = C13×C22⋊Q8central stem extension (φ=1)208C2.6(D4xC26)416,183
C2.7(D4×C26) = C13×C22.D4central stem extension (φ=1)208C2.7(D4xC26)416,184
C2.8(D4×C26) = C13×C4.4D4central stem extension (φ=1)208C2.8(D4xC26)416,185
C2.9(D4×C26) = C13×C41D4central stem extension (φ=1)208C2.9(D4xC26)416,188
C2.10(D4×C26) = C13×C4⋊Q8central stem extension (φ=1)416C2.10(D4xC26)416,189
C2.11(D4×C26) = D8×C26central stem extension (φ=1)208C2.11(D4xC26)416,193
C2.12(D4×C26) = SD16×C26central stem extension (φ=1)208C2.12(D4xC26)416,194
C2.13(D4×C26) = Q16×C26central stem extension (φ=1)416C2.13(D4xC26)416,195
C2.14(D4×C26) = C13×C4○D8central stem extension (φ=1)2082C2.14(D4xC26)416,196
C2.15(D4×C26) = C13×C8⋊C22central stem extension (φ=1)1044C2.15(D4xC26)416,197
C2.16(D4×C26) = C13×C8.C22central stem extension (φ=1)2084C2.16(D4xC26)416,198

׿
×
𝔽