Extensions 1→N→G→Q→1 with N=C2 and Q=C13×C4○D4

Direct product G=N×Q with N=C2 and Q=C13×C4○D4
dρLabelID
C4○D4×C26208C4oD4xC26416,230


Non-split extensions G=N.Q with N=C2 and Q=C13×C4○D4
extensionφ:Q→Aut NdρLabelID
C2.1(C13×C4○D4) = C13×C42⋊C2central extension (φ=1)208C2.1(C13xC4oD4)416,178
C2.2(C13×C4○D4) = D4×C52central extension (φ=1)208C2.2(C13xC4oD4)416,179
C2.3(C13×C4○D4) = Q8×C52central extension (φ=1)416C2.3(C13xC4oD4)416,180
C2.4(C13×C4○D4) = C13×C4⋊D4central stem extension (φ=1)208C2.4(C13xC4oD4)416,182
C2.5(C13×C4○D4) = C13×C22⋊Q8central stem extension (φ=1)208C2.5(C13xC4oD4)416,183
C2.6(C13×C4○D4) = C13×C22.D4central stem extension (φ=1)208C2.6(C13xC4oD4)416,184
C2.7(C13×C4○D4) = C13×C4.4D4central stem extension (φ=1)208C2.7(C13xC4oD4)416,185
C2.8(C13×C4○D4) = C13×C42.C2central stem extension (φ=1)416C2.8(C13xC4oD4)416,186
C2.9(C13×C4○D4) = C13×C422C2central stem extension (φ=1)208C2.9(C13xC4oD4)416,187

׿
×
𝔽