# Extensions 1→N→G→Q→1 with N=C2×He3⋊C4 and Q=C2

Direct product G=N×Q with N=C2×He3⋊C4 and Q=C2
dρLabelID
C22×He3⋊C472C2^2xHe3:C4432,543

Semidirect products G=N:Q with N=C2×He3⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×He3⋊C4)⋊1C2 = C32⋊D6⋊C4φ: C2/C1C2 ⊆ Out C2×He3⋊C4366(C2xHe3:C4):1C2432,238
(C2×He3⋊C4)⋊2C2 = C22⋊(He3⋊C4)φ: C2/C1C2 ⊆ Out C2×He3⋊C4366(C2xHe3:C4):2C2432,279
(C2×He3⋊C4)⋊3C2 = C2×He3⋊D4φ: C2/C1C2 ⊆ Out C2×He3⋊C4366+(C2xHe3:C4):3C2432,530

Non-split extensions G=N.Q with N=C2×He3⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×He3⋊C4).1C2 = C4⋊(He3⋊C4)φ: C2/C1C2 ⊆ Out C2×He3⋊C4726(C2xHe3:C4).1C2432,276
(C2×He3⋊C4).2C2 = C6.S3≀C2φ: C2/C1C2 ⊆ Out C2×He3⋊C4726-(C2xHe3:C4).2C2432,237
(C2×He3⋊C4).3C2 = C2×He3⋊C8φ: C2/C1C2 ⊆ Out C2×He3⋊C4546+(C2xHe3:C4).3C2432,529
(C2×He3⋊C4).4C2 = C2.SU3(𝔽2)φ: C2/C1C2 ⊆ Out C2×He3⋊C4723(C2xHe3:C4).4C2432,239
(C2×He3⋊C4).5C2 = C2×SU3(𝔽2)φ: C2/C1C2 ⊆ Out C2×He3⋊C4543(C2xHe3:C4).5C2432,531
(C2×He3⋊C4).6C2 = C4×He3⋊C4φ: trivial image723(C2xHe3:C4).6C2432,275

׿
×
𝔽