Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C3×S3

Direct product G=N×Q with N=C2×Dic3 and Q=C3×S3
dρLabelID
S3×C6×Dic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=C2×Dic3 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1(C3×S3) = C3×D6⋊Dic3φ: C3×S3/C32C2 ⊆ Out C2×Dic348(C2xDic3):1(C3xS3)432,426
(C2×Dic3)⋊2(C3×S3) = C3×C6.D12φ: C3×S3/C32C2 ⊆ Out C2×Dic348(C2xDic3):2(C3xS3)432,427
(C2×Dic3)⋊3(C3×S3) = C3×D6.3D6φ: C3×S3/C32C2 ⊆ Out C2×Dic3244(C2xDic3):3(C3xS3)432,652
(C2×Dic3)⋊4(C3×S3) = C6×C3⋊D12φ: C3×S3/C32C2 ⊆ Out C2×Dic348(C2xDic3):4(C3xS3)432,656
(C2×Dic3)⋊5(C3×S3) = C6×C6.D6φ: trivial image48(C2xDic3):5(C3xS3)432,654

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1(C3×S3) = C3×Dic3⋊Dic3φ: C3×S3/C32C2 ⊆ Out C2×Dic348(C2xDic3).1(C3xS3)432,428
(C2×Dic3).2(C3×S3) = C3×C62.C22φ: C3×S3/C32C2 ⊆ Out C2×Dic348(C2xDic3).2(C3xS3)432,429
(C2×Dic3).3(C3×S3) = C6×C322Q8φ: C3×S3/C32C2 ⊆ Out C2×Dic348(C2xDic3).3(C3xS3)432,657
(C2×Dic3).4(C3×S3) = C3×Dic32φ: trivial image48(C2xDic3).4(C3xS3)432,425

׿
×
𝔽