Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C3⋊S3

Direct product G=N×Q with N=C2×Dic3 and Q=C3⋊S3
dρLabelID
C2×Dic3×C3⋊S3144C2xDic3xC3:S3432,677

Semidirect products G=N:Q with N=C2×Dic3 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1(C3⋊S3) = C62.78D6φ: C3⋊S3/C32C2 ⊆ Out C2×Dic3144(C2xDic3):1(C3:S3)432,450
(C2×Dic3)⋊2(C3⋊S3) = C62.79D6φ: C3⋊S3/C32C2 ⊆ Out C2×Dic372(C2xDic3):2(C3:S3)432,451
(C2×Dic3)⋊3(C3⋊S3) = C62.93D6φ: C3⋊S3/C32C2 ⊆ Out C2×Dic372(C2xDic3):3(C3:S3)432,678
(C2×Dic3)⋊4(C3⋊S3) = C2×C338D4φ: C3⋊S3/C32C2 ⊆ Out C2×Dic372(C2xDic3):4(C3:S3)432,682
(C2×Dic3)⋊5(C3⋊S3) = C2×C338(C2×C4)φ: trivial image72(C2xDic3):5(C3:S3)432,679

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1(C3⋊S3) = C62.80D6φ: C3⋊S3/C32C2 ⊆ Out C2×Dic3144(C2xDic3).1(C3:S3)432,452
(C2×Dic3).2(C3⋊S3) = C62.81D6φ: C3⋊S3/C32C2 ⊆ Out C2×Dic3144(C2xDic3).2(C3:S3)432,453
(C2×Dic3).3(C3⋊S3) = C62.82D6φ: C3⋊S3/C32C2 ⊆ Out C2×Dic3144(C2xDic3).3(C3:S3)432,454
(C2×Dic3).4(C3⋊S3) = C2×C334Q8φ: C3⋊S3/C32C2 ⊆ Out C2×Dic3144(C2xDic3).4(C3:S3)432,683
(C2×Dic3).5(C3⋊S3) = Dic3×C3⋊Dic3φ: trivial image144(C2xDic3).5(C3:S3)432,448

׿
×
𝔽