Extensions 1→N→G→Q→1 with N=D12 and Q=C3×C6

Direct product G=N×Q with N=D12 and Q=C3×C6
dρLabelID
C3×C6×D12144C3xC6xD12432,702

Semidirect products G=N:Q with N=D12 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
D121(C3×C6) = C32×D24φ: C3×C6/C32C2 ⊆ Out D12144D12:1(C3xC6)432,467
D122(C3×C6) = C32×D4⋊S3φ: C3×C6/C32C2 ⊆ Out D1272D12:2(C3xC6)432,475
D123(C3×C6) = S3×D4×C32φ: C3×C6/C32C2 ⊆ Out D1272D12:3(C3xC6)432,704
D124(C3×C6) = C32×Q83S3φ: C3×C6/C32C2 ⊆ Out D12144D12:4(C3xC6)432,707
D125(C3×C6) = C32×C4○D12φ: trivial image72D12:5(C3xC6)432,703

Non-split extensions G=N.Q with N=D12 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
D12.1(C3×C6) = C32×C24⋊C2φ: C3×C6/C32C2 ⊆ Out D12144D12.1(C3xC6)432,466
D12.2(C3×C6) = C32×Q82S3φ: C3×C6/C32C2 ⊆ Out D12144D12.2(C3xC6)432,477

׿
×
𝔽