# Extensions 1→N→G→Q→1 with N=D6 and Q=S32

Direct product G=N×Q with N=D6 and Q=S32
dρLabelID
C2×S33248+C2xS3^3432,759

Semidirect products G=N:Q with N=D6 and Q=S32
extensionφ:Q→Out NdρLabelID
D61S32 = S3×D6⋊S3φ: S32/C3×S3C2 ⊆ Out D6488-D6:1S3^2432,597
D62S32 = S3×C3⋊D12φ: S32/C3×S3C2 ⊆ Out D6248+D6:2S3^2432,598
D63S32 = D6⋊S32φ: S32/C3×S3C2 ⊆ Out D6488-D6:3S3^2432,600
D64S32 = D64S32φ: S32/C3⋊S3C2 ⊆ Out D6248+D6:4S3^2432,599
D65S32 = (S3×C6)⋊D6φ: S32/C3⋊S3C2 ⊆ Out D6248+D6:5S3^2432,601
D66S32 = C3⋊S34D12φ: S32/C3⋊S3C2 ⊆ Out D6248+D6:6S3^2432,602

Non-split extensions G=N.Q with N=D6 and Q=S32
extensionφ:Q→Out NdρLabelID
D6.1S32 = (S3×C6).D6φ: S32/C3×S3C2 ⊆ Out D6248+D6.1S3^2432,606
D6.2S32 = D6.S32φ: S32/C3×S3C2 ⊆ Out D6488-D6.2S3^2432,607
D6.3S32 = D6.3S32φ: S32/C3×S3C2 ⊆ Out D6248+D6.3S3^2432,609
D6.4S32 = D6.4S32φ: S32/C3⋊S3C2 ⊆ Out D6488-D6.4S3^2432,608
D6.5S32 = D6⋊S3⋊S3φ: S32/C3⋊S3C2 ⊆ Out D6488-D6.5S3^2432,610
D6.6S32 = D6.6S32φ: S32/C3⋊S3C2 ⊆ Out D6488-D6.6S3^2432,611
D6.7S32 = S32×Dic3φ: trivial image488-D6.7S3^2432,594
D6.8S32 = S3×C6.D6φ: trivial image248+D6.8S3^2432,595
D6.9S32 = S3×C322Q8φ: trivial image488-D6.9S3^2432,603

׿
×
𝔽