Extensions 1→N→G→Q→1 with N=C3xC6.D6 and Q=C2

Direct product G=NxQ with N=C3xC6.D6 and Q=C2
dρLabelID
C6xC6.D648C6xC6.D6432,654

Semidirect products G=N:Q with N=C3xC6.D6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC6.D6):1C2 = C3:S3:4D12φ: C2/C1C2 ⊆ Out C3xC6.D6248+(C3xC6.D6):1C2432,602
(C3xC6.D6):2C2 = D6.S32φ: C2/C1C2 ⊆ Out C3xC6.D6488-(C3xC6.D6):2C2432,607
(C3xC6.D6):3C2 = Dic3.S32φ: C2/C1C2 ⊆ Out C3xC6.D6248+(C3xC6.D6):3C2432,612
(C3xC6.D6):4C2 = C3xD6.6D6φ: C2/C1C2 ⊆ Out C3xC6.D6484(C3xC6.D6):4C2432,647
(C3xC6.D6):5C2 = C3xD6.3D6φ: C2/C1C2 ⊆ Out C3xC6.D6244(C3xC6.D6):5C2432,652
(C3xC6.D6):6C2 = C3xDic3:D6φ: C2/C1C2 ⊆ Out C3xC6.D6244(C3xC6.D6):6C2432,659
(C3xC6.D6):7C2 = C3xS32:C4φ: C2/C1C2 ⊆ Out C3xC6.D6244(C3xC6.D6):7C2432,574
(C3xC6.D6):8C2 = C3:S3.2D12φ: C2/C1C2 ⊆ Out C3xC6.D6244(C3xC6.D6):8C2432,579
(C3xC6.D6):9C2 = S3xC6.D6φ: C2/C1C2 ⊆ Out C3xC6.D6248+(C3xC6.D6):9C2432,595
(C3xC6.D6):10C2 = Dic3:6S32φ: C2/C1C2 ⊆ Out C3xC6.D6488-(C3xC6.D6):10C2432,596
(C3xC6.D6):11C2 = S32xC12φ: trivial image484(C3xC6.D6):11C2432,648

Non-split extensions G=N.Q with N=C3xC6.D6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC6.D6).1C2 = C33:5(C2xQ8)φ: C2/C1C2 ⊆ Out C3xC6.D6488-(C3xC6.D6).1C2432,604
(C3xC6.D6).2C2 = C3xDic3.D6φ: C2/C1C2 ⊆ Out C3xC6.D6484(C3xC6.D6).2C2432,645
(C3xC6.D6).3C2 = C3xC3:S3.Q8φ: C2/C1C2 ⊆ Out C3xC6.D6484(C3xC6.D6).3C2432,575
(C3xC6.D6).4C2 = C33:C4:C4φ: C2/C1C2 ⊆ Out C3xC6.D6484(C3xC6.D6).4C2432,581

׿
x
:
Z
F
o
wr
Q
<