Extensions 1→N→G→Q→1 with N=C33:9(C2xC4) and Q=C2

Direct product G=NxQ with N=C33:9(C2xC4) and Q=C2
dρLabelID
C2xC33:9(C2xC4)48C2xC3^3:9(C2xC4)432,692

Semidirect products G=N:Q with N=C33:9(C2xC4) and Q=C2
extensionφ:Q→Out NdρLabelID
C33:9(C2xC4):1C2 = D6:4S32φ: C2/C1C2 ⊆ Out C33:9(C2xC4)248+C3^3:9(C2xC4):1C2432,599
C33:9(C2xC4):2C2 = D6.4S32φ: C2/C1C2 ⊆ Out C33:9(C2xC4)488-C3^3:9(C2xC4):2C2432,608
C33:9(C2xC4):3C2 = D6.3S32φ: C2/C1C2 ⊆ Out C33:9(C2xC4)248+C3^3:9(C2xC4):3C2432,609
C33:9(C2xC4):4C2 = C12:S3:12S3φ: C2/C1C2 ⊆ Out C33:9(C2xC4)484C3^3:9(C2xC4):4C2432,688
C33:9(C2xC4):5C2 = C62.96D6φ: C2/C1C2 ⊆ Out C33:9(C2xC4)244C3^3:9(C2xC4):5C2432,693
C33:9(C2xC4):6C2 = C62:24D6φ: C2/C1C2 ⊆ Out C33:9(C2xC4)244C3^3:9(C2xC4):6C2432,696
C33:9(C2xC4):7C2 = S32:Dic3φ: C2/C1C2 ⊆ Out C33:9(C2xC4)244C3^3:9(C2xC4):7C2432,580
C33:9(C2xC4):8C2 = (C3xC6).8D12φ: C2/C1C2 ⊆ Out C33:9(C2xC4)248+C3^3:9(C2xC4):8C2432,586
C33:9(C2xC4):9C2 = S32xDic3φ: C2/C1C2 ⊆ Out C33:9(C2xC4)488-C3^3:9(C2xC4):9C2432,594
C33:9(C2xC4):10C2 = S3xC6.D6φ: C2/C1C2 ⊆ Out C33:9(C2xC4)248+C3^3:9(C2xC4):10C2432,595
C33:9(C2xC4):11C2 = C4xC32:4D6φ: trivial image484C3^3:9(C2xC4):11C2432,690

Non-split extensions G=N.Q with N=C33:9(C2xC4) and Q=C2
extensionφ:Q→Out NdρLabelID
C33:9(C2xC4).1C2 = C33:5(C2xQ8)φ: C2/C1C2 ⊆ Out C33:9(C2xC4)488-C3^3:9(C2xC4).1C2432,604
C33:9(C2xC4).2C2 = C3:S3:4Dic6φ: C2/C1C2 ⊆ Out C33:9(C2xC4)484C3^3:9(C2xC4).2C2432,687
C33:9(C2xC4).3C2 = C33:C4:C4φ: C2/C1C2 ⊆ Out C33:9(C2xC4)484C3^3:9(C2xC4).3C2432,581
C33:9(C2xC4).4C2 = (C3xC6).9D12φ: C2/C1C2 ⊆ Out C33:9(C2xC4)488-C3^3:9(C2xC4).4C2432,587

׿
x
:
Z
F
o
wr
Q
<