# Extensions 1→N→G→Q→1 with N=C2×S3×C3⋊S3 and Q=C2

Direct product G=N×Q with N=C2×S3×C3⋊S3 and Q=C2
dρLabelID
C22×S3×C3⋊S372C2^2xS3xC3:S3432,768

Semidirect products G=N:Q with N=C2×S3×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S3×C3⋊S3)⋊1C2 = S3×C3⋊D12φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S3248+(C2xS3xC3:S3):1C2432,598
(C2×S3×C3⋊S3)⋊2C2 = D64S32φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S3248+(C2xS3xC3:S3):2C2432,599
(C2×S3×C3⋊S3)⋊3C2 = (S3×C6)⋊D6φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S3248+(C2xS3xC3:S3):3C2432,601
(C2×S3×C3⋊S3)⋊4C2 = C3⋊S34D12φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S3248+(C2xS3xC3:S3):4C2432,602
(C2×S3×C3⋊S3)⋊5C2 = S3×C12⋊S3φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S372(C2xS3xC3:S3):5C2432,671
(C2×S3×C3⋊S3)⋊6C2 = C3⋊S3×D12φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S372(C2xS3xC3:S3):6C2432,672
(C2×S3×C3⋊S3)⋊7C2 = C12⋊S32φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S372(C2xS3xC3:S3):7C2432,673
(C2×S3×C3⋊S3)⋊8C2 = S3×C327D4φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S372(C2xS3xC3:S3):8C2432,684
(C2×S3×C3⋊S3)⋊9C2 = C3⋊S3×C3⋊D4φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S372(C2xS3xC3:S3):9C2432,685
(C2×S3×C3⋊S3)⋊10C2 = C6223D6φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S336(C2xS3xC3:S3):10C2432,686
(C2×S3×C3⋊S3)⋊11C2 = C2×S33φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S3248+(C2xS3xC3:S3):11C2432,759

Non-split extensions G=N.Q with N=C2×S3×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S3×C3⋊S3).1C2 = D6⋊(C32⋊C4)φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S3248+(C2xS3xC3:S3).1C2432,568
(C2×S3×C3⋊S3).2C2 = S3×C6.D6φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S3248+(C2xS3xC3:S3).2C2432,595
(C2×S3×C3⋊S3).3C2 = C2×S3×C32⋊C4φ: C2/C1C2 ⊆ Out C2×S3×C3⋊S3248+(C2xS3xC3:S3).3C2432,753
(C2×S3×C3⋊S3).4C2 = C4×S3×C3⋊S3φ: trivial image72(C2xS3xC3:S3).4C2432,670

׿
×
𝔽