Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4×Dic7

Direct product G=N×Q with N=C2 and Q=C2×C4×Dic7
dρLabelID
C22×C4×Dic7448C2^2xC4xDic7448,1235


Non-split extensions G=N.Q with N=C2 and Q=C2×C4×Dic7
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4×Dic7) = C2×C4×C7⋊C8central extension (φ=1)448C2.1(C2xC4xDic7)448,454
C2.2(C2×C4×Dic7) = C42×Dic7central extension (φ=1)448C2.2(C2xC4xDic7)448,464
C2.3(C2×C4×Dic7) = C2×C8×Dic7central extension (φ=1)448C2.3(C2xC4xDic7)448,632
C2.4(C2×C4×Dic7) = C2×C42.D7central stem extension (φ=1)448C2.4(C2xC4xDic7)448,455
C2.5(C2×C4×Dic7) = C4×C4.Dic7central stem extension (φ=1)224C2.5(C2xC4xDic7)448,456
C2.6(C2×C4×Dic7) = C424Dic7central stem extension (φ=1)448C2.6(C2xC4xDic7)448,466
C2.7(C2×C4×Dic7) = C4×C4⋊Dic7central stem extension (φ=1)448C2.7(C2xC4xDic7)448,468
C2.8(C2×C4×Dic7) = C22⋊C4×Dic7central stem extension (φ=1)224C2.8(C2xC4xDic7)448,475
C2.9(C2×C4×Dic7) = C4⋊C4×Dic7central stem extension (φ=1)448C2.9(C2xC4xDic7)448,509
C2.10(C2×C4×Dic7) = C28.5C42central stem extension (φ=1)224C2.10(C2xC4xDic7)448,531
C2.11(C2×C4×Dic7) = C2×C56⋊C4central stem extension (φ=1)448C2.11(C2xC4xDic7)448,634
C2.12(C2×C4×Dic7) = C28.12C42central stem extension (φ=1)224C2.12(C2xC4xDic7)448,635
C2.13(C2×C4×Dic7) = M4(2)×Dic7central stem extension (φ=1)224C2.13(C2xC4xDic7)448,651
C2.14(C2×C4×Dic7) = C28.7C42central stem extension (φ=1)224C2.14(C2xC4xDic7)448,656
C2.15(C2×C4×Dic7) = C2×C14.C42central stem extension (φ=1)448C2.15(C2xC4xDic7)448,742
C2.16(C2×C4×Dic7) = C4×C23.D7central stem extension (φ=1)224C2.16(C2xC4xDic7)448,743

׿
×
𝔽