Extensions 1→N→G→Q→1 with N=C2 and Q=D4×Dic7

Direct product G=N×Q with N=C2 and Q=D4×Dic7
dρLabelID
C2×D4×Dic7224C2xD4xDic7448,1248


Non-split extensions G=N.Q with N=C2 and Q=D4×Dic7
extensionφ:Q→Aut NdρLabelID
C2.1(D4×Dic7) = C22⋊C4×Dic7central extension (φ=1)224C2.1(D4xDic7)448,475
C2.2(D4×Dic7) = C4⋊C4×Dic7central extension (φ=1)448C2.2(D4xDic7)448,509
C2.3(D4×Dic7) = D4×C7⋊C8central extension (φ=1)224C2.3(D4xDic7)448,544
C2.4(D4×Dic7) = C24.47D14central stem extension (φ=1)224C2.4(D4xDic7)448,484
C2.5(D4×Dic7) = C24.8D14central stem extension (φ=1)224C2.5(D4xDic7)448,485
C2.6(D4×Dic7) = C4⋊C45Dic7central stem extension (φ=1)448C2.6(D4xDic7)448,515
C2.7(D4×Dic7) = C4⋊(C4⋊Dic7)central stem extension (φ=1)448C2.7(D4xDic7)448,519
C2.8(D4×Dic7) = C42.47D14central stem extension (φ=1)224C2.8(D4xDic7)448,545
C2.9(D4×Dic7) = C283M4(2)central stem extension (φ=1)224C2.9(D4xDic7)448,546
C2.10(D4×Dic7) = D8×Dic7central stem extension (φ=1)224C2.10(D4xDic7)448,683
C2.11(D4×Dic7) = D8⋊Dic7central stem extension (φ=1)224C2.11(D4xDic7)448,686
C2.12(D4×Dic7) = SD16×Dic7central stem extension (φ=1)224C2.12(D4xDic7)448,695
C2.13(D4×Dic7) = SD16⋊Dic7central stem extension (φ=1)224C2.13(D4xDic7)448,698
C2.14(D4×Dic7) = Q16×Dic7central stem extension (φ=1)448C2.14(D4xDic7)448,717
C2.15(D4×Dic7) = Q16⋊Dic7central stem extension (φ=1)448C2.15(D4xDic7)448,718
C2.16(D4×Dic7) = D85Dic7central stem extension (φ=1)1124C2.16(D4xDic7)448,730
C2.17(D4×Dic7) = D84Dic7central stem extension (φ=1)1124C2.17(D4xDic7)448,731
C2.18(D4×Dic7) = C24.18D14central stem extension (φ=1)224C2.18(D4xDic7)448,754
C2.19(D4×Dic7) = C24.19D14central stem extension (φ=1)224C2.19(D4xDic7)448,755

׿
×
𝔽