# Extensions 1→N→G→Q→1 with N=C22×Q8 and Q=D7

Direct product G=N×Q with N=C22×Q8 and Q=D7
dρLabelID
C22×Q8×D7224C2^2xQ8xD7448,1372

Semidirect products G=N:Q with N=C22×Q8 and Q=D7
extensionφ:Q→Out NdρLabelID
(C22×Q8)⋊1D7 = (C7×Q8)⋊13D4φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8):1D7448,761
(C22×Q8)⋊2D7 = (C22×Q8)⋊D7φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8):2D7448,765
(C22×Q8)⋊3D7 = C22×Q8⋊D7φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8):3D7448,1260
(C22×Q8)⋊4D7 = C2×C28.C23φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8):4D7448,1261
(C22×Q8)⋊5D7 = C2×D143Q8φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8):5D7448,1266
(C22×Q8)⋊6D7 = C2×C28.23D4φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8):6D7448,1267
(C22×Q8)⋊7D7 = Q8×C7⋊D4φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8):7D7448,1268
(C22×Q8)⋊8D7 = C14.442- 1+4φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8):8D7448,1269
(C22×Q8)⋊9D7 = C14.452- 1+4φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8):9D7448,1270
(C22×Q8)⋊10D7 = C2×Q8.10D14φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8):10D7448,1374
(C22×Q8)⋊11D7 = C22×Q82D7φ: trivial image224(C2^2xQ8):11D7448,1373

Non-split extensions G=N.Q with N=C22×Q8 and Q=D7
extensionφ:Q→Out NdρLabelID
(C22×Q8).1D7 = C2×Q8⋊Dic7φ: D7/C7C2 ⊆ Out C22×Q8448(C2^2xQ8).1D7448,758
(C22×Q8).2D7 = (Q8×C14)⋊6C4φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8).2D7448,759
(C22×Q8).3D7 = C2×C28.10D4φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8).3D7448,760
(C22×Q8).4D7 = (C2×C14)⋊8Q16φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8).4D7448,762
(C22×Q8).5D7 = C14.C22≀C2φ: D7/C7C2 ⊆ Out C22×Q8448(C2^2xQ8).5D7448,763
(C22×Q8).6D7 = (Q8×C14)⋊7C4φ: D7/C7C2 ⊆ Out C22×Q8448(C2^2xQ8).6D7448,764
(C22×Q8).7D7 = C22×C7⋊Q16φ: D7/C7C2 ⊆ Out C22×Q8448(C2^2xQ8).7D7448,1262
(C22×Q8).8D7 = C2×Dic7⋊Q8φ: D7/C7C2 ⊆ Out C22×Q8448(C2^2xQ8).8D7448,1263
(C22×Q8).9D7 = C14.422- 1+4φ: D7/C7C2 ⊆ Out C22×Q8224(C2^2xQ8).9D7448,1265
(C22×Q8).10D7 = C2×Q8×Dic7φ: trivial image448(C2^2xQ8).10D7448,1264

׿
×
𝔽