# Extensions 1→N→G→Q→1 with N=C22 and Q=C8×D7

Direct product G=N×Q with N=C22 and Q=C8×D7
dρLabelID
D7×C22×C8224D7xC2^2xC8448,1189

Semidirect products G=N:Q with N=C22 and Q=C8×D7
extensionφ:Q→Aut NdρLabelID
C221(C8×D7) = C7⋊D4⋊C8φ: C8×D7/C7⋊C8C2 ⊆ Aut C22224C2^2:1(C8xD7)448,259
C222(C8×D7) = C8×C7⋊D4φ: C8×D7/C56C2 ⊆ Aut C22224C2^2:2(C8xD7)448,643
C223(C8×D7) = D7×C22⋊C8φ: C8×D7/C4×D7C2 ⊆ Aut C22112C2^2:3(C8xD7)448,258

Non-split extensions G=N.Q with N=C22 and Q=C8×D7
extensionφ:Q→Aut NdρLabelID
C22.1(C8×D7) = C16.12D14φ: C8×D7/C7⋊C8C2 ⊆ Aut C222244C2^2.1(C8xD7)448,441
C22.2(C8×D7) = D28.4C8φ: C8×D7/C56C2 ⊆ Aut C222242C2^2.2(C8xD7)448,435
C22.3(C8×D7) = (C22×D7)⋊C8φ: C8×D7/C4×D7C2 ⊆ Aut C22112C2^2.3(C8xD7)448,25
C22.4(C8×D7) = (C2×Dic7)⋊C8φ: C8×D7/C4×D7C2 ⊆ Aut C22224C2^2.4(C8xD7)448,26
C22.5(C8×D7) = M5(2)⋊D7φ: C8×D7/C4×D7C2 ⊆ Aut C221124C2^2.5(C8xD7)448,71
C22.6(C8×D7) = Dic7.5M4(2)φ: C8×D7/C4×D7C2 ⊆ Aut C22224C2^2.6(C8xD7)448,252
C22.7(C8×D7) = D7×M5(2)φ: C8×D7/C4×D7C2 ⊆ Aut C221124C2^2.7(C8xD7)448,440
C22.8(C8×D7) = C16×Dic7central extension (φ=1)448C2^2.8(C8xD7)448,57
C22.9(C8×D7) = Dic7⋊C16central extension (φ=1)448C2^2.9(C8xD7)448,58
C22.10(C8×D7) = C1129C4central extension (φ=1)448C2^2.10(C8xD7)448,59
C22.11(C8×D7) = D14⋊C16central extension (φ=1)224C2^2.11(C8xD7)448,64
C22.12(C8×D7) = (C2×C56)⋊5C4central extension (φ=1)448C2^2.12(C8xD7)448,107
C22.13(C8×D7) = D7×C2×C16central extension (φ=1)224C2^2.13(C8xD7)448,433
C22.14(C8×D7) = C2×C16⋊D7central extension (φ=1)224C2^2.14(C8xD7)448,434
C22.15(C8×D7) = C2×C8×Dic7central extension (φ=1)448C2^2.15(C8xD7)448,632
C22.16(C8×D7) = C2×Dic7⋊C8central extension (φ=1)448C2^2.16(C8xD7)448,633
C22.17(C8×D7) = C2×D14⋊C8central extension (φ=1)224C2^2.17(C8xD7)448,642

׿
×
𝔽