extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic14)⋊1C2 = C4×C56⋊C2 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):1C2 | 448,225 |
(C4×Dic14)⋊2C2 = C42.16D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):2C2 | 448,244 |
(C4×Dic14)⋊3C2 = C42.274D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):3C2 | 448,923 |
(C4×Dic14)⋊4C2 = C42.277D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):4C2 | 448,932 |
(C4×Dic14)⋊5C2 = C42.87D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):5C2 | 448,969 |
(C4×Dic14)⋊6C2 = C42.88D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):6C2 | 448,970 |
(C4×Dic14)⋊7C2 = C42.89D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):7C2 | 448,971 |
(C4×Dic14)⋊8C2 = C42.91D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):8C2 | 448,976 |
(C4×Dic14)⋊9C2 = C42.93D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):9C2 | 448,981 |
(C4×Dic14)⋊10C2 = C42.96D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):10C2 | 448,984 |
(C4×Dic14)⋊11C2 = C42.98D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):11C2 | 448,986 |
(C4×Dic14)⋊12C2 = C42.99D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):12C2 | 448,987 |
(C4×Dic14)⋊13C2 = C42.159D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):13C2 | 448,1154 |
(C4×Dic14)⋊14C2 = C42.160D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):14C2 | 448,1155 |
(C4×Dic14)⋊15C2 = C42.162D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):15C2 | 448,1161 |
(C4×Dic14)⋊16C2 = C42.164D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):16C2 | 448,1163 |
(C4×Dic14)⋊17C2 = C42.36D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):17C2 | 448,379 |
(C4×Dic14)⋊18C2 = Dic14⋊8D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):18C2 | 448,382 |
(C4×Dic14)⋊19C2 = C4×D4.D7 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):19C2 | 448,551 |
(C4×Dic14)⋊20C2 = C42.51D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):20C2 | 448,552 |
(C4×Dic14)⋊21C2 = C42.61D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):21C2 | 448,588 |
(C4×Dic14)⋊22C2 = Dic14⋊9D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):22C2 | 448,609 |
(C4×Dic14)⋊23C2 = C4×D4⋊2D7 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):23C2 | 448,989 |
(C4×Dic14)⋊24C2 = D4×Dic14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):24C2 | 448,990 |
(C4×Dic14)⋊25C2 = C42.102D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):25C2 | 448,991 |
(C4×Dic14)⋊26C2 = D4⋊5Dic14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):26C2 | 448,992 |
(C4×Dic14)⋊27C2 = C42.105D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):27C2 | 448,994 |
(C4×Dic14)⋊28C2 = C42.106D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):28C2 | 448,995 |
(C4×Dic14)⋊29C2 = D4⋊6Dic14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):29C2 | 448,996 |
(C4×Dic14)⋊30C2 = C42.108D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):30C2 | 448,999 |
(C4×Dic14)⋊31C2 = Dic14⋊23D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):31C2 | 448,1005 |
(C4×Dic14)⋊32C2 = Dic14⋊24D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):32C2 | 448,1006 |
(C4×Dic14)⋊33C2 = C42.229D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):33C2 | 448,1010 |
(C4×Dic14)⋊34C2 = C42.114D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):34C2 | 448,1012 |
(C4×Dic14)⋊35C2 = C42.115D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):35C2 | 448,1014 |
(C4×Dic14)⋊36C2 = C42.122D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):36C2 | 448,1021 |
(C4×Dic14)⋊37C2 = C4×Q8×D7 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):37C2 | 448,1024 |
(C4×Dic14)⋊38C2 = C42.125D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):38C2 | 448,1025 |
(C4×Dic14)⋊39C2 = C42.232D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):39C2 | 448,1031 |
(C4×Dic14)⋊40C2 = C42.134D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):40C2 | 448,1036 |
(C4×Dic14)⋊41C2 = C42.135D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):41C2 | 448,1037 |
(C4×Dic14)⋊42C2 = C42.136D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):42C2 | 448,1038 |
(C4×Dic14)⋊43C2 = C42.137D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):43C2 | 448,1122 |
(C4×Dic14)⋊44C2 = C42.139D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):44C2 | 448,1124 |
(C4×Dic14)⋊45C2 = Dic14⋊10D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):45C2 | 448,1130 |
(C4×Dic14)⋊46C2 = C42.143D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):46C2 | 448,1134 |
(C4×Dic14)⋊47C2 = D28⋊7Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):47C2 | 448,1143 |
(C4×Dic14)⋊48C2 = C42.152D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):48C2 | 448,1147 |
(C4×Dic14)⋊49C2 = C42.154D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):49C2 | 448,1149 |
(C4×Dic14)⋊50C2 = C42.166D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):50C2 | 448,1166 |
(C4×Dic14)⋊51C2 = Dic14⋊11D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):51C2 | 448,1171 |
(C4×Dic14)⋊52C2 = D28⋊8Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):52C2 | 448,1180 |
(C4×Dic14)⋊53C2 = D28⋊9Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):53C2 | 448,1183 |
(C4×Dic14)⋊54C2 = C42.177D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 224 | | (C4xDic14):54C2 | 448,1185 |
(C4×Dic14)⋊55C2 = C4×C4○D28 | φ: trivial image | 224 | | (C4xDic14):55C2 | 448,927 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic14).1C2 = C4.8Dic28 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).1C2 | 448,13 |
(C4×Dic14).2C2 = C56⋊11Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).2C2 | 448,213 |
(C4×Dic14).3C2 = C4×Dic28 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).3C2 | 448,232 |
(C4×Dic14).4C2 = C56⋊Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).4C2 | 448,235 |
(C4×Dic14).5C2 = Dic28⋊C4 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).5C2 | 448,250 |
(C4×Dic14).6C2 = Dic14⋊2C8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).6C2 | 448,41 |
(C4×Dic14).7C2 = C42.27D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).7C2 | 448,362 |
(C4×Dic14).8C2 = Dic14.3Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).8C2 | 448,363 |
(C4×Dic14).9C2 = Dic14⋊C8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).9C2 | 448,364 |
(C4×Dic14).10C2 = C28.M4(2) | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).10C2 | 448,365 |
(C4×Dic14).11C2 = C4⋊Dic28 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).11C2 | 448,383 |
(C4×Dic14).12C2 = C28.7Q16 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).12C2 | 448,384 |
(C4×Dic14).13C2 = Dic14⋊4Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).13C2 | 448,385 |
(C4×Dic14).14C2 = C4×C7⋊Q16 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).14C2 | 448,563 |
(C4×Dic14).15C2 = C42.59D14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).15C2 | 448,564 |
(C4×Dic14).16C2 = Dic14.4Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).16C2 | 448,597 |
(C4×Dic14).17C2 = C28⋊Q16 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).17C2 | 448,624 |
(C4×Dic14).18C2 = Dic14⋊5Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).18C2 | 448,625 |
(C4×Dic14).19C2 = Dic14⋊6Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).19C2 | 448,628 |
(C4×Dic14).20C2 = Q8×Dic14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).20C2 | 448,1019 |
(C4×Dic14).21C2 = Dic14⋊10Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).21C2 | 448,1020 |
(C4×Dic14).22C2 = Q8⋊5Dic14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).22C2 | 448,1022 |
(C4×Dic14).23C2 = Q8⋊6Dic14 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).23C2 | 448,1023 |
(C4×Dic14).24C2 = Dic14⋊7Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).24C2 | 448,1138 |
(C4×Dic14).25C2 = Dic14⋊8Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).25C2 | 448,1174 |
(C4×Dic14).26C2 = Dic14⋊9Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic14 | 448 | | (C4xDic14).26C2 | 448,1175 |
(C4×Dic14).27C2 = C8×Dic14 | φ: trivial image | 448 | | (C4xDic14).27C2 | 448,212 |