Extensions 1→N→G→Q→1 with N=C2 and Q=C4×Dic14

Direct product G=N×Q with N=C2 and Q=C4×Dic14
dρLabelID
C2×C4×Dic14448C2xC4xDic14448,920


Non-split extensions G=N.Q with N=C2 and Q=C4×Dic14
extensionφ:Q→Aut NdρLabelID
C2.1(C4×Dic14) = C8×Dic14central extension (φ=1)448C2.1(C4xDic14)448,212
C2.2(C4×Dic14) = C4×Dic7⋊C4central extension (φ=1)448C2.2(C4xDic14)448,465
C2.3(C4×Dic14) = C4×C4⋊Dic7central extension (φ=1)448C2.3(C4xDic14)448,468
C2.4(C4×Dic14) = (C2×C28)⋊Q8central stem extension (φ=1)448C2.4(C4xDic14)448,180
C2.5(C4×Dic14) = C14.(C4×Q8)central stem extension (φ=1)448C2.5(C4xDic14)448,181
C2.6(C4×Dic14) = C4⋊Dic78C4central stem extension (φ=1)448C2.6(C4xDic14)448,188
C2.7(C4×Dic14) = C14.(C4×D4)central stem extension (φ=1)448C2.7(C4xDic14)448,189
C2.8(C4×Dic14) = C5611Q8central stem extension (φ=1)448C2.8(C4xDic14)448,213
C2.9(C4×Dic14) = C56⋊Q8central stem extension (φ=1)448C2.9(C4xDic14)448,235
C2.10(C4×Dic14) = C284(C4⋊C4)central stem extension (φ=1)448C2.10(C4xDic14)448,462
C2.11(C4×Dic14) = (C2×C28)⋊10Q8central stem extension (φ=1)448C2.11(C4xDic14)448,463
C2.12(C4×Dic14) = (C2×C42).D7central stem extension (φ=1)448C2.12(C4xDic14)448,467

׿
×
𝔽