Extensions 1→N→G→Q→1 with N=C2 and Q=Dic73Q8

Direct product G=N×Q with N=C2 and Q=Dic73Q8
dρLabelID
C2×Dic73Q8448C2xDic7:3Q8448,949


Non-split extensions G=N.Q with N=C2 and Q=Dic73Q8
extensionφ:Q→Aut NdρLabelID
C2.1(Dic73Q8) = Dic7⋊C42central extension (φ=1)448C2.1(Dic7:3Q8)448,183
C2.2(Dic73Q8) = Dic14⋊C8central extension (φ=1)448C2.2(Dic7:3Q8)448,364
C2.3(Dic73Q8) = C4⋊C4×Dic7central extension (φ=1)448C2.3(Dic7:3Q8)448,509
C2.4(Dic73Q8) = (C2×C28)⋊Q8central stem extension (φ=1)448C2.4(Dic7:3Q8)448,180
C2.5(Dic73Q8) = Dic7⋊C4⋊C4central stem extension (φ=1)448C2.5(Dic7:3Q8)448,186
C2.6(Dic73Q8) = C4⋊Dic77C4central stem extension (φ=1)448C2.6(Dic7:3Q8)448,187
C2.7(Dic73Q8) = C42.27D14central stem extension (φ=1)448C2.7(Dic7:3Q8)448,362
C2.8(Dic73Q8) = C28.M4(2)central stem extension (φ=1)448C2.8(Dic7:3Q8)448,365
C2.9(Dic73Q8) = Dic7⋊(C4⋊C4)central stem extension (φ=1)448C2.9(Dic7:3Q8)448,506
C2.10(Dic73Q8) = C28⋊(C4⋊C4)central stem extension (φ=1)448C2.10(Dic7:3Q8)448,507
C2.11(Dic73Q8) = (C2×Dic7)⋊6Q8central stem extension (φ=1)448C2.11(Dic7:3Q8)448,508
C2.12(Dic73Q8) = C22.23(Q8×D7)central stem extension (φ=1)448C2.12(Dic7:3Q8)448,512

׿
×
𝔽