Extensions 1→N→G→Q→1 with N=Dic5 and Q=C3⋊C8

Direct product G=N×Q with N=Dic5 and Q=C3⋊C8
dρLabelID
Dic5×C3⋊C8480Dic5xC3:C8480,25

Semidirect products G=N:Q with N=Dic5 and Q=C3⋊C8
extensionφ:Q→Out NdρLabelID
Dic51(C3⋊C8) = C60.13Q8φ: C3⋊C8/C12C2 ⊆ Out Dic5480Dic5:1(C3:C8)480,58
Dic52(C3⋊C8) = C4×C15⋊C8φ: C3⋊C8/C12C2 ⊆ Out Dic5480Dic5:2(C3:C8)480,305
Dic53(C3⋊C8) = Dic5.13D12φ: C3⋊C8/C12C2 ⊆ Out Dic5480Dic5:3(C3:C8)480,309

Non-split extensions G=N.Q with N=Dic5 and Q=C3⋊C8
extensionφ:Q→Out NdρLabelID
Dic5.1(C3⋊C8) = C40.51D6φ: C3⋊C8/C12C2 ⊆ Out Dic52404Dic5.1(C3:C8)480,10
Dic5.2(C3⋊C8) = C24.F5φ: C3⋊C8/C12C2 ⊆ Out Dic52404Dic5.2(C3:C8)480,294
Dic5.3(C3⋊C8) = C120.C4φ: C3⋊C8/C12C2 ⊆ Out Dic52404Dic5.3(C3:C8)480,295
Dic5.4(C3⋊C8) = D5×C3⋊C16φ: trivial image2404Dic5.4(C3:C8)480,7

׿
×
𝔽