Extensions 1→N→G→Q→1 with N=Dic3×Dic5 and Q=C2

Direct product G=N×Q with N=Dic3×Dic5 and Q=C2
dρLabelID
C2×Dic3×Dic5480C2xDic3xDic5480,603

Semidirect products G=N:Q with N=Dic3×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×Dic5)⋊1C2 = (C2×C20).D6φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):1C2480,402
(Dic3×Dic5)⋊2C2 = C4⋊Dic3⋊D5φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):2C2480,413
(Dic3×Dic5)⋊3C2 = (S3×C20)⋊5C4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):3C2480,414
(Dic3×Dic5)⋊4C2 = D6⋊C4.D5φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):4C2480,417
(Dic3×Dic5)⋊5C2 = C605C4⋊C2φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):5C2480,418
(Dic3×Dic5)⋊6C2 = C4⋊Dic5⋊S3φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):6C2480,421
(Dic3×Dic5)⋊7C2 = (C4×D15)⋊8C4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):7C2480,423
(Dic3×Dic5)⋊8C2 = (C4×D5)⋊Dic3φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):8C2480,434
(Dic3×Dic5)⋊9C2 = (C2×C12).D10φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):9C2480,437
(Dic3×Dic5)⋊10C2 = (C2×C60).C22φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):10C2480,438
(Dic3×Dic5)⋊11C2 = (D5×Dic3)⋊C4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):11C2480,469
(Dic3×Dic5)⋊12C2 = D10.19(C4×S3)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):12C2480,470
(Dic3×Dic5)⋊13C2 = Dic1513D4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):13C2480,472
(Dic3×Dic5)⋊14C2 = D6.(C4×D5)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):14C2480,474
(Dic3×Dic5)⋊15C2 = (S3×Dic5)⋊C4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):15C2480,476
(Dic3×Dic5)⋊16C2 = D30.C2⋊C4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):16C2480,478
(Dic3×Dic5)⋊17C2 = D30.23(C2×C4)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):17C2480,479
(Dic3×Dic5)⋊18C2 = Dic1514D4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):18C2480,482
(Dic3×Dic5)⋊19C2 = D6⋊(C4×D5)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):19C2480,516
(Dic3×Dic5)⋊20C2 = C1517(C4×D4)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):20C2480,517
(Dic3×Dic5)⋊21C2 = C1520(C4×D4)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):21C2480,520
(Dic3×Dic5)⋊22C2 = C1522(C4×D4)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):22C2480,522
(Dic3×Dic5)⋊23C2 = (C2×Dic6)⋊D5φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):23C2480,531
(Dic3×Dic5)⋊24C2 = Dic15.10D4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):24C2480,538
(Dic3×Dic5)⋊25C2 = C23.D5⋊S3φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):25C2480,601
(Dic3×Dic5)⋊26C2 = Dic15.19D4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):26C2480,602
(Dic3×Dic5)⋊27C2 = (C6×Dic5)⋊7C4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):27C2480,604
(Dic3×Dic5)⋊28C2 = C23.26(S3×D5)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):28C2480,605
(Dic3×Dic5)⋊29C2 = C23.13(S3×D5)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):29C2480,606
(Dic3×Dic5)⋊30C2 = C23.14(S3×D5)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):30C2480,607
(Dic3×Dic5)⋊31C2 = C23.48(S3×D5)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):31C2480,608
(Dic3×Dic5)⋊32C2 = C6.(D4×D5)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):32C2480,610
(Dic3×Dic5)⋊33C2 = Dic5×C3⋊D4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):33C2480,627
(Dic3×Dic5)⋊34C2 = C1526(C4×D4)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):34C2480,628
(Dic3×Dic5)⋊35C2 = Dic3×C5⋊D4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):35C2480,629
(Dic3×Dic5)⋊36C2 = C1528(C4×D4)φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):36C2480,632
(Dic3×Dic5)⋊37C2 = Dic1516D4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):37C2480,635
(Dic3×Dic5)⋊38C2 = Dic1517D4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):38C2480,636
(Dic3×Dic5)⋊39C2 = Dic155D4φ: C2/C1C2 ⊆ Out Dic3×Dic5240(Dic3xDic5):39C2480,643
(Dic3×Dic5)⋊40C2 = C4×D5×Dic3φ: trivial image240(Dic3xDic5):40C2480,467
(Dic3×Dic5)⋊41C2 = C4×S3×Dic5φ: trivial image240(Dic3xDic5):41C2480,473
(Dic3×Dic5)⋊42C2 = C4×D30.C2φ: trivial image240(Dic3xDic5):42C2480,477

Non-split extensions G=N.Q with N=Dic3×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×Dic5).1C2 = Dic55Dic6φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).1C2480,399
(Dic3×Dic5).2C2 = Dic35Dic10φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).2C2480,400
(Dic3×Dic5).3C2 = Dic155Q8φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).3C2480,401
(Dic3×Dic5).4C2 = Dic151Q8φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).4C2480,403
(Dic3×Dic5).5C2 = Dic3⋊Dic10φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).5C2480,404
(Dic3×Dic5).6C2 = Dic15⋊Q8φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).6C2480,405
(Dic3×Dic5).7C2 = Dic3×Dic10φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).7C2480,406
(Dic3×Dic5).8C2 = Dic156Q8φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).8C2480,407
(Dic3×Dic5).9C2 = Dic5×Dic6φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).9C2480,408
(Dic3×Dic5).10C2 = Dic3017C4φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).10C2480,409
(Dic3×Dic5).11C2 = Dic5.1Dic6φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).11C2480,410
(Dic3×Dic5).12C2 = Dic5.2Dic6φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).12C2480,411
(Dic3×Dic5).13C2 = Dic15.Q8φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).13C2480,412
(Dic3×Dic5).14C2 = Dic15.2Q8φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).14C2480,415
(Dic3×Dic5).15C2 = Dic3014C4φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).15C2480,416
(Dic3×Dic5).16C2 = Dic3.Dic10φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).16C2480,419
(Dic3×Dic5).17C2 = Dic157Q8φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).17C2480,420
(Dic3×Dic5).18C2 = Dic3.2Dic10φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).18C2480,422
(Dic3×Dic5).19C2 = Dic3×C5⋊C8φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).19C2480,244
(Dic3×Dic5).20C2 = C30.M4(2)φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).20C2480,245
(Dic3×Dic5).21C2 = C30.4M4(2)φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).21C2480,252
(Dic3×Dic5).22C2 = Dic15⋊C8φ: C2/C1C2 ⊆ Out Dic3×Dic5480(Dic3xDic5).22C2480,253

׿
×
𝔽