Extensions 1→N→G→Q→1 with N=Dic3xDic5 and Q=C2

Direct product G=NxQ with N=Dic3xDic5 and Q=C2
dρLabelID
C2xDic3xDic5480C2xDic3xDic5480,603

Semidirect products G=N:Q with N=Dic3xDic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3xDic5):1C2 = (C2xC20).D6φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):1C2480,402
(Dic3xDic5):2C2 = C4:Dic3:D5φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):2C2480,413
(Dic3xDic5):3C2 = (S3xC20):5C4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):3C2480,414
(Dic3xDic5):4C2 = D6:C4.D5φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):4C2480,417
(Dic3xDic5):5C2 = C60:5C4:C2φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):5C2480,418
(Dic3xDic5):6C2 = C4:Dic5:S3φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):6C2480,421
(Dic3xDic5):7C2 = (C4xD15):8C4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):7C2480,423
(Dic3xDic5):8C2 = (C4xD5):Dic3φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):8C2480,434
(Dic3xDic5):9C2 = (C2xC12).D10φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):9C2480,437
(Dic3xDic5):10C2 = (C2xC60).C22φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):10C2480,438
(Dic3xDic5):11C2 = (D5xDic3):C4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):11C2480,469
(Dic3xDic5):12C2 = D10.19(C4xS3)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):12C2480,470
(Dic3xDic5):13C2 = Dic15:13D4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):13C2480,472
(Dic3xDic5):14C2 = D6.(C4xD5)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):14C2480,474
(Dic3xDic5):15C2 = (S3xDic5):C4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):15C2480,476
(Dic3xDic5):16C2 = D30.C2:C4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):16C2480,478
(Dic3xDic5):17C2 = D30.23(C2xC4)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):17C2480,479
(Dic3xDic5):18C2 = Dic15:14D4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):18C2480,482
(Dic3xDic5):19C2 = D6:(C4xD5)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):19C2480,516
(Dic3xDic5):20C2 = C15:17(C4xD4)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):20C2480,517
(Dic3xDic5):21C2 = C15:20(C4xD4)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):21C2480,520
(Dic3xDic5):22C2 = C15:22(C4xD4)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):22C2480,522
(Dic3xDic5):23C2 = (C2xDic6):D5φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):23C2480,531
(Dic3xDic5):24C2 = Dic15.10D4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):24C2480,538
(Dic3xDic5):25C2 = C23.D5:S3φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):25C2480,601
(Dic3xDic5):26C2 = Dic15.19D4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):26C2480,602
(Dic3xDic5):27C2 = (C6xDic5):7C4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):27C2480,604
(Dic3xDic5):28C2 = C23.26(S3xD5)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):28C2480,605
(Dic3xDic5):29C2 = C23.13(S3xD5)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):29C2480,606
(Dic3xDic5):30C2 = C23.14(S3xD5)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):30C2480,607
(Dic3xDic5):31C2 = C23.48(S3xD5)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):31C2480,608
(Dic3xDic5):32C2 = C6.(D4xD5)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):32C2480,610
(Dic3xDic5):33C2 = Dic5xC3:D4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):33C2480,627
(Dic3xDic5):34C2 = C15:26(C4xD4)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):34C2480,628
(Dic3xDic5):35C2 = Dic3xC5:D4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):35C2480,629
(Dic3xDic5):36C2 = C15:28(C4xD4)φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):36C2480,632
(Dic3xDic5):37C2 = Dic15:16D4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):37C2480,635
(Dic3xDic5):38C2 = Dic15:17D4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):38C2480,636
(Dic3xDic5):39C2 = Dic15:5D4φ: C2/C1C2 ⊆ Out Dic3xDic5240(Dic3xDic5):39C2480,643
(Dic3xDic5):40C2 = C4xD5xDic3φ: trivial image240(Dic3xDic5):40C2480,467
(Dic3xDic5):41C2 = C4xS3xDic5φ: trivial image240(Dic3xDic5):41C2480,473
(Dic3xDic5):42C2 = C4xD30.C2φ: trivial image240(Dic3xDic5):42C2480,477

Non-split extensions G=N.Q with N=Dic3xDic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3xDic5).1C2 = Dic5:5Dic6φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).1C2480,399
(Dic3xDic5).2C2 = Dic3:5Dic10φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).2C2480,400
(Dic3xDic5).3C2 = Dic15:5Q8φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).3C2480,401
(Dic3xDic5).4C2 = Dic15:1Q8φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).4C2480,403
(Dic3xDic5).5C2 = Dic3:Dic10φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).5C2480,404
(Dic3xDic5).6C2 = Dic15:Q8φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).6C2480,405
(Dic3xDic5).7C2 = Dic3xDic10φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).7C2480,406
(Dic3xDic5).8C2 = Dic15:6Q8φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).8C2480,407
(Dic3xDic5).9C2 = Dic5xDic6φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).9C2480,408
(Dic3xDic5).10C2 = Dic30:17C4φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).10C2480,409
(Dic3xDic5).11C2 = Dic5.1Dic6φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).11C2480,410
(Dic3xDic5).12C2 = Dic5.2Dic6φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).12C2480,411
(Dic3xDic5).13C2 = Dic15.Q8φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).13C2480,412
(Dic3xDic5).14C2 = Dic15.2Q8φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).14C2480,415
(Dic3xDic5).15C2 = Dic30:14C4φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).15C2480,416
(Dic3xDic5).16C2 = Dic3.Dic10φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).16C2480,419
(Dic3xDic5).17C2 = Dic15:7Q8φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).17C2480,420
(Dic3xDic5).18C2 = Dic3.2Dic10φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).18C2480,422
(Dic3xDic5).19C2 = Dic3xC5:C8φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).19C2480,244
(Dic3xDic5).20C2 = C30.M4(2)φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).20C2480,245
(Dic3xDic5).21C2 = C30.4M4(2)φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).21C2480,252
(Dic3xDic5).22C2 = Dic15:C8φ: C2/C1C2 ⊆ Out Dic3xDic5480(Dic3xDic5).22C2480,253

׿
x
:
Z
F
o
wr
Q
<