Extensions 1→N→G→Q→1 with N=C3xDic20 and Q=C2

Direct product G=NxQ with N=C3xDic20 and Q=C2
dρLabelID
C6xDic20480C6xDic20480,698

Semidirect products G=N:Q with N=C3xDic20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xDic20):1C2 = C24.D10φ: C2/C1C2 ⊆ Out C3xDic202404+(C3xDic20):1C2480,19
(C3xDic20):2C2 = S3xDic20φ: C2/C1C2 ⊆ Out C3xDic202404-(C3xDic20):2C2480,338
(C3xDic20):3C2 = D120:5C2φ: C2/C1C2 ⊆ Out C3xDic202404+(C3xDic20):3C2480,351
(C3xDic20):4C2 = Dic20:S3φ: C2/C1C2 ⊆ Out C3xDic202404(C3xDic20):4C2480,339
(C3xDic20):5C2 = C3xC16:D5φ: C2/C1C2 ⊆ Out C3xDic202402(C3xDic20):5C2480,78
(C3xDic20):6C2 = C15:SD32φ: C2/C1C2 ⊆ Out C3xDic202404(C3xDic20):6C2480,17
(C3xDic20):7C2 = Dic10.D6φ: C2/C1C2 ⊆ Out C3xDic202404(C3xDic20):7C2480,340
(C3xDic20):8C2 = D24:5D5φ: C2/C1C2 ⊆ Out C3xDic202404(C3xDic20):8C2480,355
(C3xDic20):9C2 = D30.4D4φ: C2/C1C2 ⊆ Out C3xDic202404(C3xDic20):9C2480,356
(C3xDic20):10C2 = C3xC8.D10φ: C2/C1C2 ⊆ Out C3xDic202404(C3xDic20):10C2480,702
(C3xDic20):11C2 = C3xD8.D5φ: C2/C1C2 ⊆ Out C3xDic202404(C3xDic20):11C2480,105
(C3xDic20):12C2 = C3xD8:3D5φ: C2/C1C2 ⊆ Out C3xDic202404(C3xDic20):12C2480,705
(C3xDic20):13C2 = C3xD5xQ16φ: C2/C1C2 ⊆ Out C3xDic202404(C3xDic20):13C2480,710
(C3xDic20):14C2 = C3xSD16:D5φ: C2/C1C2 ⊆ Out C3xDic202404(C3xDic20):14C2480,708
(C3xDic20):15C2 = C3xD40:7C2φ: trivial image2402(C3xDic20):15C2480,697

Non-split extensions G=N.Q with N=C3xDic20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xDic20).1C2 = C3:Dic40φ: C2/C1C2 ⊆ Out C3xDic204804-(C3xDic20).1C2480,23
(C3xDic20).2C2 = C3xDic40φ: C2/C1C2 ⊆ Out C3xDic204802(C3xDic20).2C2480,79
(C3xDic20).3C2 = C15:Q32φ: C2/C1C2 ⊆ Out C3xDic204804(C3xDic20).3C2480,22
(C3xDic20).4C2 = C3xC5:Q32φ: C2/C1C2 ⊆ Out C3xDic204804(C3xDic20).4C2480,107

׿
x
:
Z
F
o
wr
Q
<