Extensions 1→N→G→Q→1 with N=C3×Dic20 and Q=C2

Direct product G=N×Q with N=C3×Dic20 and Q=C2
dρLabelID
C6×Dic20480C6xDic20480,698

Semidirect products G=N:Q with N=C3×Dic20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic20)⋊1C2 = C24.D10φ: C2/C1C2 ⊆ Out C3×Dic202404+(C3xDic20):1C2480,19
(C3×Dic20)⋊2C2 = S3×Dic20φ: C2/C1C2 ⊆ Out C3×Dic202404-(C3xDic20):2C2480,338
(C3×Dic20)⋊3C2 = D1205C2φ: C2/C1C2 ⊆ Out C3×Dic202404+(C3xDic20):3C2480,351
(C3×Dic20)⋊4C2 = Dic20⋊S3φ: C2/C1C2 ⊆ Out C3×Dic202404(C3xDic20):4C2480,339
(C3×Dic20)⋊5C2 = C3×C16⋊D5φ: C2/C1C2 ⊆ Out C3×Dic202402(C3xDic20):5C2480,78
(C3×Dic20)⋊6C2 = C15⋊SD32φ: C2/C1C2 ⊆ Out C3×Dic202404(C3xDic20):6C2480,17
(C3×Dic20)⋊7C2 = Dic10.D6φ: C2/C1C2 ⊆ Out C3×Dic202404(C3xDic20):7C2480,340
(C3×Dic20)⋊8C2 = D245D5φ: C2/C1C2 ⊆ Out C3×Dic202404(C3xDic20):8C2480,355
(C3×Dic20)⋊9C2 = D30.4D4φ: C2/C1C2 ⊆ Out C3×Dic202404(C3xDic20):9C2480,356
(C3×Dic20)⋊10C2 = C3×C8.D10φ: C2/C1C2 ⊆ Out C3×Dic202404(C3xDic20):10C2480,702
(C3×Dic20)⋊11C2 = C3×D8.D5φ: C2/C1C2 ⊆ Out C3×Dic202404(C3xDic20):11C2480,105
(C3×Dic20)⋊12C2 = C3×D83D5φ: C2/C1C2 ⊆ Out C3×Dic202404(C3xDic20):12C2480,705
(C3×Dic20)⋊13C2 = C3×D5×Q16φ: C2/C1C2 ⊆ Out C3×Dic202404(C3xDic20):13C2480,710
(C3×Dic20)⋊14C2 = C3×SD16⋊D5φ: C2/C1C2 ⊆ Out C3×Dic202404(C3xDic20):14C2480,708
(C3×Dic20)⋊15C2 = C3×D407C2φ: trivial image2402(C3xDic20):15C2480,697

Non-split extensions G=N.Q with N=C3×Dic20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic20).1C2 = C3⋊Dic40φ: C2/C1C2 ⊆ Out C3×Dic204804-(C3xDic20).1C2480,23
(C3×Dic20).2C2 = C3×Dic40φ: C2/C1C2 ⊆ Out C3×Dic204802(C3xDic20).2C2480,79
(C3×Dic20).3C2 = C15⋊Q32φ: C2/C1C2 ⊆ Out C3×Dic204804(C3xDic20).3C2480,22
(C3×Dic20).4C2 = C3×C5⋊Q32φ: C2/C1C2 ⊆ Out C3×Dic204804(C3xDic20).4C2480,107

׿
×
𝔽