extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×C5⋊2C8)⋊1C2 = D12.2Dic5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | 4 | (C6xC5:2C8):1C2 | 480,362 |
(C6×C5⋊2C8)⋊2C2 = D60.5C4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | 4 | (C6xC5:2C8):2C2 | 480,366 |
(C6×C5⋊2C8)⋊3C2 = C20.60D12 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | 4 | (C6xC5:2C8):3C2 | 480,379 |
(C6×C5⋊2C8)⋊4C2 = C10.D24 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):4C2 | 480,43 |
(C6×C5⋊2C8)⋊5C2 = D60⋊15C4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):5C2 | 480,45 |
(C6×C5⋊2C8)⋊6C2 = C2×C5⋊D24 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):6C2 | 480,378 |
(C6×C5⋊2C8)⋊7C2 = C2×D12.D5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):7C2 | 480,392 |
(C6×C5⋊2C8)⋊8C2 = C2×Dic6⋊D5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):8C2 | 480,393 |
(C6×C5⋊2C8)⋊9C2 = C60.94D4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):9C2 | 480,32 |
(C6×C5⋊2C8)⋊10C2 = D30⋊4C8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):10C2 | 480,33 |
(C6×C5⋊2C8)⋊11C2 = C2×S3×C5⋊2C8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):11C2 | 480,361 |
(C6×C5⋊2C8)⋊12C2 = C2×D15⋊2C8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):12C2 | 480,365 |
(C6×C5⋊2C8)⋊13C2 = C2×D6.Dic5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):13C2 | 480,370 |
(C6×C5⋊2C8)⋊14C2 = C2×D30.5C4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):14C2 | 480,371 |
(C6×C5⋊2C8)⋊15C2 = C3×D20⋊6C4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):15C2 | 480,87 |
(C6×C5⋊2C8)⋊16C2 = C3×D4⋊Dic5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):16C2 | 480,110 |
(C6×C5⋊2C8)⋊17C2 = C3×D20.2C4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | 4 | (C6xC5:2C8):17C2 | 480,700 |
(C6×C5⋊2C8)⋊18C2 = C6×D4⋊D5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):18C2 | 480,724 |
(C6×C5⋊2C8)⋊19C2 = C6×D4.D5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):19C2 | 480,726 |
(C6×C5⋊2C8)⋊20C2 = C6×Q8⋊D5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):20C2 | 480,734 |
(C6×C5⋊2C8)⋊21C2 = C3×D4.Dic5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | 4 | (C6xC5:2C8):21C2 | 480,741 |
(C6×C5⋊2C8)⋊22C2 = C3×D4.8D10 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | 4 | (C6xC5:2C8):22C2 | 480,743 |
(C6×C5⋊2C8)⋊23C2 = C3×D10⋊1C8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):23C2 | 480,98 |
(C6×C5⋊2C8)⋊24C2 = C3×C20.55D4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):24C2 | 480,108 |
(C6×C5⋊2C8)⋊25C2 = C6×C8⋊D5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):25C2 | 480,693 |
(C6×C5⋊2C8)⋊26C2 = C6×C4.Dic5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | | (C6xC5:2C8):26C2 | 480,714 |
(C6×C5⋊2C8)⋊27C2 = D5×C2×C24 | φ: trivial image | 240 | | (C6xC5:2C8):27C2 | 480,692 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×C5⋊2C8).1C2 = C60.105D4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | 4 | (C6xC5:2C8).1C2 | 480,67 |
(C6×C5⋊2C8).2C2 = C10.Dic12 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).2C2 | 480,49 |
(C6×C5⋊2C8).3C2 = Dic30⋊15C4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).3C2 | 480,51 |
(C6×C5⋊2C8).4C2 = C60.7Q8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).4C2 | 480,61 |
(C6×C5⋊2C8).5C2 = C60.8Q8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).5C2 | 480,64 |
(C6×C5⋊2C8).6C2 = C2×C5⋊Dic12 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).6C2 | 480,396 |
(C6×C5⋊2C8).7C2 = Dic3×C5⋊2C8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).7C2 | 480,26 |
(C6×C5⋊2C8).8C2 = Dic15⋊4C8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).8C2 | 480,27 |
(C6×C5⋊2C8).9C2 = C30.22C42 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).9C2 | 480,29 |
(C6×C5⋊2C8).10C2 = C30.23C42 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).10C2 | 480,30 |
(C6×C5⋊2C8).11C2 = C60.14Q8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).11C2 | 480,59 |
(C6×C5⋊2C8).12C2 = C60.15Q8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).12C2 | 480,60 |
(C6×C5⋊2C8).13C2 = C3×C10.D8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).13C2 | 480,85 |
(C6×C5⋊2C8).14C2 = C3×C20.Q8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).14C2 | 480,86 |
(C6×C5⋊2C8).15C2 = C3×C10.Q16 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).15C2 | 480,88 |
(C6×C5⋊2C8).16C2 = C3×C20.53D4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | 4 | (C6xC5:2C8).16C2 | 480,100 |
(C6×C5⋊2C8).17C2 = C3×Q8⋊Dic5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).17C2 | 480,113 |
(C6×C5⋊2C8).18C2 = C6×C5⋊Q16 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).18C2 | 480,736 |
(C6×C5⋊2C8).19C2 = C60.C8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | 4 | (C6xC5:2C8).19C2 | 480,303 |
(C6×C5⋊2C8).20C2 = C3×C42.D5 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).20C2 | 480,81 |
(C6×C5⋊2C8).21C2 = C3×C20⋊3C8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).21C2 | 480,82 |
(C6×C5⋊2C8).22C2 = C3×C20.8Q8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).22C2 | 480,92 |
(C6×C5⋊2C8).23C2 = C3×C40⋊8C4 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).23C2 | 480,93 |
(C6×C5⋊2C8).24C2 = C2×C15⋊C16 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).24C2 | 480,302 |
(C6×C5⋊2C8).25C2 = C3×C20.C8 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 240 | 4 | (C6xC5:2C8).25C2 | 480,278 |
(C6×C5⋊2C8).26C2 = C6×C5⋊C16 | φ: C2/C1 → C2 ⊆ Out C6×C5⋊2C8 | 480 | | (C6xC5:2C8).26C2 | 480,277 |
(C6×C5⋊2C8).27C2 = C12×C5⋊2C8 | φ: trivial image | 480 | | (C6xC5:2C8).27C2 | 480,80 |
(C6×C5⋊2C8).28C2 = Dic5×C24 | φ: trivial image | 480 | | (C6xC5:2C8).28C2 | 480,91 |