Extensions 1→N→G→Q→1 with N=C3xC10.D4 and Q=C2

Direct product G=NxQ with N=C3xC10.D4 and Q=C2
dρLabelID
C6xC10.D4480C6xC10.D4480,716

Semidirect products G=N:Q with N=C3xC10.D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC10.D4):1C2 = C3xC42:2D5φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):1C2480,669
(C3xC10.D4):2C2 = C3xC20.48D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):2C2480,717
(C3xC10.D4):3C2 = C3xC23.23D10φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):3C2480,722
(C3xC10.D4):4C2 = C60:5C4:C2φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):4C2480,418
(C3xC10.D4):5C2 = D6:2Dic10φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):5C2480,493
(C3xC10.D4):6C2 = D30:D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):6C2480,496
(C3xC10.D4):7C2 = D6:3Dic10φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):7C2480,508
(C3xC10.D4):8C2 = D30.6D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):8C2480,509
(C3xC10.D4):9C2 = D30.35D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):9C2480,431
(C3xC10.D4):10C2 = D6:Dic5.C2φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):10C2480,443
(C3xC10.D4):11C2 = D30:8Q8φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):11C2480,453
(C3xC10.D4):12C2 = (S3xDic5):C4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):12C2480,476
(C3xC10.D4):13C2 = D30.Q8φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):13C2480,480
(C3xC10.D4):14C2 = Dic15:14D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):14C2480,482
(C3xC10.D4):15C2 = C3xDic5.14D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):15C2480,671
(C3xC10.D4):16C2 = C3xD10:D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):16C2480,677
(C3xC10.D4):17C2 = C3xD10.13D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):17C2480,687
(C3xC10.D4):18C2 = C4:Dic3:D5φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):18C2480,413
(C3xC10.D4):19C2 = Dic5:D12φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):19C2480,492
(C3xC10.D4):20C2 = D30:2Q8φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):20C2480,495
(C3xC10.D4):21C2 = (C2xD12).D5φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):21C2480,499
(C3xC10.D4):22C2 = D30:3Q8φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):22C2480,500
(C3xC10.D4):23C2 = C3xC23.11D10φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):23C2480,670
(C3xC10.D4):24C2 = C3xC23.D10φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):24C2480,672
(C3xC10.D4):25C2 = C3xDic5:4D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):25C2480,674
(C3xC10.D4):26C2 = C3xD10.12D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):26C2480,676
(C3xC10.D4):27C2 = C3xD5xC4:C4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):27C2480,684
(C3xC10.D4):28C2 = D6:Dic5:C2φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):28C2480,427
(C3xC10.D4):29C2 = D6:Dic10φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):29C2480,428
(C3xC10.D4):30C2 = C10.D4:S3φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):30C2480,456
(C3xC10.D4):31C2 = S3xC10.D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):31C2480,475
(C3xC10.D4):32C2 = D30.23(C2xC4)φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):32C2480,479
(C3xC10.D4):33C2 = C15:22(C4xD4)φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):33C2480,522
(C3xC10.D4):34C2 = C3xD10:Q8φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):34C2480,689
(C3xC10.D4):35C2 = C3xC4:C4:D5φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):35C2480,691
(C3xC10.D4):36C2 = C3xC23.18D10φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):36C2480,728
(C3xC10.D4):37C2 = C3xDic5:D4φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):37C2480,732
(C3xC10.D4):38C2 = C3xD10:3Q8φ: C2/C1C2 ⊆ Out C3xC10.D4240(C3xC10.D4):38C2480,739
(C3xC10.D4):39C2 = C3xC42:D5φ: trivial image240(C3xC10.D4):39C2480,665
(C3xC10.D4):40C2 = C12xC5:D4φ: trivial image240(C3xC10.D4):40C2480,721

Non-split extensions G=N.Q with N=C3xC10.D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC10.D4).1C2 = C3xC20.6Q8φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).1C2480,663
(C3xC10.D4).2C2 = Dic3:Dic10φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).2C2480,404
(C3xC10.D4).3C2 = Dic5.1Dic6φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).3C2480,410
(C3xC10.D4).4C2 = Dic3.Dic10φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).4C2480,419
(C3xC10.D4).5C2 = Dic15:5Q8φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).5C2480,401
(C3xC10.D4).6C2 = Dic15.4Q8φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).6C2480,458
(C3xC10.D4).7C2 = C3xC20:Q8φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).7C2480,681
(C3xC10.D4).8C2 = C3xC4.Dic10φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).8C2480,683
(C3xC10.D4).9C2 = Dic15:Q8φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).9C2480,405
(C3xC10.D4).10C2 = Dic5.2Dic6φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).10C2480,411
(C3xC10.D4).11C2 = Dic15.Q8φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).11C2480,412
(C3xC10.D4).12C2 = C3xDic5:3Q8φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).12C2480,680
(C3xC10.D4).13C2 = Dic3:5Dic10φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).13C2480,400
(C3xC10.D4).14C2 = Dic3.3Dic10φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).14C2480,455
(C3xC10.D4).15C2 = C3xDic5.Q8φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).15C2480,682
(C3xC10.D4).16C2 = C3xDic5:Q8φ: C2/C1C2 ⊆ Out C3xC10.D4480(C3xC10.D4).16C2480,737
(C3xC10.D4).17C2 = C12xDic10φ: trivial image480(C3xC10.D4).17C2480,661

׿
x
:
Z
F
o
wr
Q
<