Extensions 1→N→G→Q→1 with N=C3×C10.D4 and Q=C2

Direct product G=N×Q with N=C3×C10.D4 and Q=C2
dρLabelID
C6×C10.D4480C6xC10.D4480,716

Semidirect products G=N:Q with N=C3×C10.D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C10.D4)⋊1C2 = C3×C422D5φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):1C2480,669
(C3×C10.D4)⋊2C2 = C3×C20.48D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):2C2480,717
(C3×C10.D4)⋊3C2 = C3×C23.23D10φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):3C2480,722
(C3×C10.D4)⋊4C2 = C605C4⋊C2φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):4C2480,418
(C3×C10.D4)⋊5C2 = D62Dic10φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):5C2480,493
(C3×C10.D4)⋊6C2 = D30⋊D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):6C2480,496
(C3×C10.D4)⋊7C2 = D63Dic10φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):7C2480,508
(C3×C10.D4)⋊8C2 = D30.6D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):8C2480,509
(C3×C10.D4)⋊9C2 = D30.35D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):9C2480,431
(C3×C10.D4)⋊10C2 = D6⋊Dic5.C2φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):10C2480,443
(C3×C10.D4)⋊11C2 = D308Q8φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):11C2480,453
(C3×C10.D4)⋊12C2 = (S3×Dic5)⋊C4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):12C2480,476
(C3×C10.D4)⋊13C2 = D30.Q8φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):13C2480,480
(C3×C10.D4)⋊14C2 = Dic1514D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):14C2480,482
(C3×C10.D4)⋊15C2 = C3×Dic5.14D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):15C2480,671
(C3×C10.D4)⋊16C2 = C3×D10⋊D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):16C2480,677
(C3×C10.D4)⋊17C2 = C3×D10.13D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):17C2480,687
(C3×C10.D4)⋊18C2 = C4⋊Dic3⋊D5φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):18C2480,413
(C3×C10.D4)⋊19C2 = Dic5⋊D12φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):19C2480,492
(C3×C10.D4)⋊20C2 = D302Q8φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):20C2480,495
(C3×C10.D4)⋊21C2 = (C2×D12).D5φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):21C2480,499
(C3×C10.D4)⋊22C2 = D303Q8φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):22C2480,500
(C3×C10.D4)⋊23C2 = C3×C23.11D10φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):23C2480,670
(C3×C10.D4)⋊24C2 = C3×C23.D10φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):24C2480,672
(C3×C10.D4)⋊25C2 = C3×Dic54D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):25C2480,674
(C3×C10.D4)⋊26C2 = C3×D10.12D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):26C2480,676
(C3×C10.D4)⋊27C2 = C3×D5×C4⋊C4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):27C2480,684
(C3×C10.D4)⋊28C2 = D6⋊Dic5⋊C2φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):28C2480,427
(C3×C10.D4)⋊29C2 = D6⋊Dic10φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):29C2480,428
(C3×C10.D4)⋊30C2 = C10.D4⋊S3φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):30C2480,456
(C3×C10.D4)⋊31C2 = S3×C10.D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):31C2480,475
(C3×C10.D4)⋊32C2 = D30.23(C2×C4)φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):32C2480,479
(C3×C10.D4)⋊33C2 = C1522(C4×D4)φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):33C2480,522
(C3×C10.D4)⋊34C2 = C3×D10⋊Q8φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):34C2480,689
(C3×C10.D4)⋊35C2 = C3×C4⋊C4⋊D5φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):35C2480,691
(C3×C10.D4)⋊36C2 = C3×C23.18D10φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):36C2480,728
(C3×C10.D4)⋊37C2 = C3×Dic5⋊D4φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):37C2480,732
(C3×C10.D4)⋊38C2 = C3×D103Q8φ: C2/C1C2 ⊆ Out C3×C10.D4240(C3xC10.D4):38C2480,739
(C3×C10.D4)⋊39C2 = C3×C42⋊D5φ: trivial image240(C3xC10.D4):39C2480,665
(C3×C10.D4)⋊40C2 = C12×C5⋊D4φ: trivial image240(C3xC10.D4):40C2480,721

Non-split extensions G=N.Q with N=C3×C10.D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C10.D4).1C2 = C3×C20.6Q8φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).1C2480,663
(C3×C10.D4).2C2 = Dic3⋊Dic10φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).2C2480,404
(C3×C10.D4).3C2 = Dic5.1Dic6φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).3C2480,410
(C3×C10.D4).4C2 = Dic3.Dic10φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).4C2480,419
(C3×C10.D4).5C2 = Dic155Q8φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).5C2480,401
(C3×C10.D4).6C2 = Dic15.4Q8φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).6C2480,458
(C3×C10.D4).7C2 = C3×C20⋊Q8φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).7C2480,681
(C3×C10.D4).8C2 = C3×C4.Dic10φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).8C2480,683
(C3×C10.D4).9C2 = Dic15⋊Q8φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).9C2480,405
(C3×C10.D4).10C2 = Dic5.2Dic6φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).10C2480,411
(C3×C10.D4).11C2 = Dic15.Q8φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).11C2480,412
(C3×C10.D4).12C2 = C3×Dic53Q8φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).12C2480,680
(C3×C10.D4).13C2 = Dic35Dic10φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).13C2480,400
(C3×C10.D4).14C2 = Dic3.3Dic10φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).14C2480,455
(C3×C10.D4).15C2 = C3×Dic5.Q8φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).15C2480,682
(C3×C10.D4).16C2 = C3×Dic5⋊Q8φ: C2/C1C2 ⊆ Out C3×C10.D4480(C3xC10.D4).16C2480,737
(C3×C10.D4).17C2 = C12×Dic10φ: trivial image480(C3xC10.D4).17C2480,661

׿
×
𝔽