Extensions 1→N→G→Q→1 with N=C3×C5⋊Q16 and Q=C2

Direct product G=N×Q with N=C3×C5⋊Q16 and Q=C2
dρLabelID
C6×C5⋊Q16480C6xC5:Q16480,736

Semidirect products G=N:Q with N=C3×C5⋊Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C5⋊Q16)⋊1C2 = S3×C5⋊Q16φ: C2/C1C2 ⊆ Out C3×C5⋊Q162408-(C3xC5:Q16):1C2480,585
(C3×C5⋊Q16)⋊2C2 = Dic10.26D6φ: C2/C1C2 ⊆ Out C3×C5⋊Q162408-(C3xC5:Q16):2C2480,586
(C3×C5⋊Q16)⋊3C2 = D15⋊Q16φ: C2/C1C2 ⊆ Out C3×C5⋊Q162408-(C3xC5:Q16):3C2480,587
(C3×C5⋊Q16)⋊4C2 = C60.C23φ: C2/C1C2 ⊆ Out C3×C5⋊Q162408+(C3xC5:Q16):4C2480,588
(C3×C5⋊Q16)⋊5C2 = Dic10.27D6φ: C2/C1C2 ⊆ Out C3×C5⋊Q162408+(C3xC5:Q16):5C2480,595
(C3×C5⋊Q16)⋊6C2 = C60.44C23φ: C2/C1C2 ⊆ Out C3×C5⋊Q162408+(C3xC5:Q16):6C2480,596
(C3×C5⋊Q16)⋊7C2 = D12.D10φ: C2/C1C2 ⊆ Out C3×C5⋊Q162408+(C3xC5:Q16):7C2480,599
(C3×C5⋊Q16)⋊8C2 = D30.44D4φ: C2/C1C2 ⊆ Out C3×C5⋊Q162408-(C3xC5:Q16):8C2480,600
(C3×C5⋊Q16)⋊9C2 = C3×SD16⋊D5φ: C2/C1C2 ⊆ Out C3×C5⋊Q162404(C3xC5:Q16):9C2480,708
(C3×C5⋊Q16)⋊10C2 = C3×SD163D5φ: C2/C1C2 ⊆ Out C3×C5⋊Q162404(C3xC5:Q16):10C2480,709
(C3×C5⋊Q16)⋊11C2 = C3×D5×Q16φ: C2/C1C2 ⊆ Out C3×C5⋊Q162404(C3xC5:Q16):11C2480,710
(C3×C5⋊Q16)⋊12C2 = C3×Q16⋊D5φ: C2/C1C2 ⊆ Out C3×C5⋊Q162404(C3xC5:Q16):12C2480,711
(C3×C5⋊Q16)⋊13C2 = C3×C20.C23φ: C2/C1C2 ⊆ Out C3×C5⋊Q162404(C3xC5:Q16):13C2480,735
(C3×C5⋊Q16)⋊14C2 = C3×D4.9D10φ: C2/C1C2 ⊆ Out C3×C5⋊Q162404(C3xC5:Q16):14C2480,744
(C3×C5⋊Q16)⋊15C2 = C3×D4.8D10φ: trivial image2404(C3xC5:Q16):15C2480,743


׿
×
𝔽