Extensions 1→N→G→Q→1 with N=C2×C15⋊Q8 and Q=C2

Direct product G=N×Q with N=C2×C15⋊Q8 and Q=C2
dρLabelID
C22×C15⋊Q8480C2^2xC15:Q8480,1121

Semidirect products G=N:Q with N=C2×C15⋊Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C15⋊Q8)⋊1C2 = D10⋊Dic6φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):1C2480,425
(C2×C15⋊Q8)⋊2C2 = Dic5.8D12φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):2C2480,426
(C2×C15⋊Q8)⋊3C2 = D6⋊Dic10φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):3C2480,428
(C2×C15⋊Q8)⋊4C2 = Dic3.D20φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):4C2480,429
(C2×C15⋊Q8)⋊5C2 = D308Q8φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):5C2480,453
(C2×C15⋊Q8)⋊6C2 = D62Dic10φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):6C2480,493
(C2×C15⋊Q8)⋊7C2 = D302Q8φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):7C2480,495
(C2×C15⋊Q8)⋊8C2 = D102Dic6φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):8C2480,498
(C2×C15⋊Q8)⋊9C2 = D304Q8φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):9C2480,505
(C2×C15⋊Q8)⋊10C2 = Dic15.D4φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):10C2480,506
(C2×C15⋊Q8)⋊11C2 = D64Dic10φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):11C2480,512
(C2×C15⋊Q8)⋊12C2 = Dic15.31D4φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):12C2480,540
(C2×C15⋊Q8)⋊13C2 = C23.D5⋊S3φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):13C2480,601
(C2×C15⋊Q8)⋊14C2 = Dic15.19D4φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):14C2480,602
(C2×C15⋊Q8)⋊15C2 = C6.(D4×D5)φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):15C2480,610
(C2×C15⋊Q8)⋊16C2 = (C2×C30)⋊Q8φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):16C2480,650
(C2×C15⋊Q8)⋊17C2 = (C2×C10)⋊8Dic6φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):17C2480,651
(C2×C15⋊Q8)⋊18C2 = Dic15.48D4φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):18C2480,652
(C2×C15⋊Q8)⋊19C2 = C2×D5×Dic6φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):19C2480,1073
(C2×C15⋊Q8)⋊20C2 = C2×S3×Dic10φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):20C2480,1078
(C2×C15⋊Q8)⋊21C2 = C2×D15⋊Q8φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):21C2480,1082
(C2×C15⋊Q8)⋊22C2 = C15⋊2- 1+4φ: C2/C1C2 ⊆ Out C2×C15⋊Q82408-(C2xC15:Q8):22C2480,1096
(C2×C15⋊Q8)⋊23C2 = C2×Dic5.D6φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):23C2480,1113
(C2×C15⋊Q8)⋊24C2 = C2×C30.C23φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):24C2480,1114
(C2×C15⋊Q8)⋊25C2 = C2×Dic3.D10φ: C2/C1C2 ⊆ Out C2×C15⋊Q8240(C2xC15:Q8):25C2480,1116
(C2×C15⋊Q8)⋊26C2 = C2×D6.D10φ: trivial image240(C2xC15:Q8):26C2480,1083

Non-split extensions G=N.Q with N=C2×C15⋊Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C15⋊Q8).1C2 = Dic55Dic6φ: C2/C1C2 ⊆ Out C2×C15⋊Q8480(C2xC15:Q8).1C2480,399
(C2×C15⋊Q8).2C2 = Dic35Dic10φ: C2/C1C2 ⊆ Out C2×C15⋊Q8480(C2xC15:Q8).2C2480,400
(C2×C15⋊Q8).3C2 = Dic155Q8φ: C2/C1C2 ⊆ Out C2×C15⋊Q8480(C2xC15:Q8).3C2480,401
(C2×C15⋊Q8).4C2 = Dic151Q8φ: C2/C1C2 ⊆ Out C2×C15⋊Q8480(C2xC15:Q8).4C2480,403
(C2×C15⋊Q8).5C2 = Dic3⋊Dic10φ: C2/C1C2 ⊆ Out C2×C15⋊Q8480(C2xC15:Q8).5C2480,404
(C2×C15⋊Q8).6C2 = Dic15⋊Q8φ: C2/C1C2 ⊆ Out C2×C15⋊Q8480(C2xC15:Q8).6C2480,405
(C2×C15⋊Q8).7C2 = C60⋊Q8φ: C2/C1C2 ⊆ Out C2×C15⋊Q8480(C2xC15:Q8).7C2480,544
(C2×C15⋊Q8).8C2 = C204Dic6φ: C2/C1C2 ⊆ Out C2×C15⋊Q8480(C2xC15:Q8).8C2480,545
(C2×C15⋊Q8).9C2 = C20⋊Dic6φ: C2/C1C2 ⊆ Out C2×C15⋊Q8480(C2xC15:Q8).9C2480,546
(C2×C15⋊Q8).10C2 = Dic5.4D12φ: C2/C1C2 ⊆ Out C2×C15⋊Q82408-(C2xC15:Q8).10C2480,251
(C2×C15⋊Q8).11C2 = C4×C15⋊Q8φ: trivial image480(C2xC15:Q8).11C2480,543

׿
×
𝔽