extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×C4⋊Dic3)⋊1C2 = D60⋊15C4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):1C2 | 480,45 |
(C5×C4⋊Dic3)⋊2C2 = (C4×D5)⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):2C2 | 480,434 |
(C5×C4⋊Dic3)⋊3C2 = C60.68D4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):3C2 | 480,436 |
(C5×C4⋊Dic3)⋊4C2 = D5×C4⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):4C2 | 480,488 |
(C5×C4⋊Dic3)⋊5C2 = D60⋊17C4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):5C2 | 480,494 |
(C5×C4⋊Dic3)⋊6C2 = C12⋊7D20 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):6C2 | 480,526 |
(C5×C4⋊Dic3)⋊7C2 = C30.D8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):7C2 | 480,40 |
(C5×C4⋊Dic3)⋊8C2 = (C4×D15)⋊8C4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):8C2 | 480,423 |
(C5×C4⋊Dic3)⋊9C2 = D30⋊10Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):9C2 | 480,466 |
(C5×C4⋊Dic3)⋊10C2 = D20⋊8Dic3 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):10C2 | 480,510 |
(C5×C4⋊Dic3)⋊11C2 = D30.2Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):11C2 | 480,513 |
(C5×C4⋊Dic3)⋊12C2 = C12⋊2D20 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):12C2 | 480,541 |
(C5×C4⋊Dic3)⋊13C2 = C5×C2.D24 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):13C2 | 480,140 |
(C5×C4⋊Dic3)⋊14C2 = C4⋊Dic3⋊D5 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):14C2 | 480,413 |
(C5×C4⋊Dic3)⋊15C2 = D30.D4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):15C2 | 480,432 |
(C5×C4⋊Dic3)⋊16C2 = (C2×C12).D10 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):16C2 | 480,437 |
(C5×C4⋊Dic3)⋊17C2 = D10.16D12 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):17C2 | 480,489 |
(C5×C4⋊Dic3)⋊18C2 = D30⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):18C2 | 480,495 |
(C5×C4⋊Dic3)⋊19C2 = Dic15.D4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):19C2 | 480,506 |
(C5×C4⋊Dic3)⋊20C2 = C5×Dic3.D4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):20C2 | 480,757 |
(C5×C4⋊Dic3)⋊21C2 = C5×C23.8D6 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):21C2 | 480,758 |
(C5×C4⋊Dic3)⋊22C2 = C5×C23.9D6 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):22C2 | 480,762 |
(C5×C4⋊Dic3)⋊23C2 = C5×C23.21D6 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):23C2 | 480,765 |
(C5×C4⋊Dic3)⋊24C2 = C5×C4.D12 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):24C2 | 480,776 |
(C5×C4⋊Dic3)⋊25C2 = C5×C4⋊C4⋊S3 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):25C2 | 480,777 |
(C5×C4⋊Dic3)⋊26C2 = C5×C12.48D4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):26C2 | 480,803 |
(C5×C4⋊Dic3)⋊27C2 = C5×C12⋊7D4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):27C2 | 480,809 |
(C5×C4⋊Dic3)⋊28C2 = C5×D4⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):28C2 | 480,151 |
(C5×C4⋊Dic3)⋊29C2 = C5×S3×C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):29C2 | 480,770 |
(C5×C4⋊Dic3)⋊30C2 = C5×C4⋊C4⋊7S3 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):30C2 | 480,771 |
(C5×C4⋊Dic3)⋊31C2 = C5×D4×Dic3 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):31C2 | 480,813 |
(C5×C4⋊Dic3)⋊32C2 = C5×D6⋊3D4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):32C2 | 480,817 |
(C5×C4⋊Dic3)⋊33C2 = C5×D6⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 240 | | (C5xC4:Dic3):33C2 | 480,825 |
(C5×C4⋊Dic3)⋊34C2 = C20×D12 | φ: trivial image | 240 | | (C5xC4:Dic3):34C2 | 480,752 |
(C5×C4⋊Dic3)⋊35C2 = C5×C23.26D6 | φ: trivial image | 240 | | (C5xC4:Dic3):35C2 | 480,805 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×C4⋊Dic3).1C2 = Dic30⋊15C4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).1C2 | 480,51 |
(C5×C4⋊Dic3).2C2 = C60.7Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).2C2 | 480,61 |
(C5×C4⋊Dic3).3C2 = C60.8Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).3C2 | 480,64 |
(C5×C4⋊Dic3).4C2 = Dic30⋊17C4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).4C2 | 480,409 |
(C5×C4⋊Dic3).5C2 = C20.Dic6 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).5C2 | 480,464 |
(C5×C4⋊Dic3).6C2 = C60⋊Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).6C2 | 480,544 |
(C5×C4⋊Dic3).7C2 = C30.Q16 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).7C2 | 480,46 |
(C5×C4⋊Dic3).8C2 = C30.SD16 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).8C2 | 480,62 |
(C5×C4⋊Dic3).9C2 = C30.20D8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).9C2 | 480,65 |
(C5×C4⋊Dic3).10C2 = Dic15⋊6Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).10C2 | 480,407 |
(C5×C4⋊Dic3).11C2 = C12.Dic10 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).11C2 | 480,460 |
(C5×C4⋊Dic3).12C2 = C20⋊Dic6 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).12C2 | 480,546 |
(C5×C4⋊Dic3).13C2 = C5×C2.Dic12 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).13C2 | 480,135 |
(C5×C4⋊Dic3).14C2 = C5×C8⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).14C2 | 480,136 |
(C5×C4⋊Dic3).15C2 = C5×C24⋊1C4 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).15C2 | 480,137 |
(C5×C4⋊Dic3).16C2 = Dic5.2Dic6 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).16C2 | 480,411 |
(C5×C4⋊Dic3).17C2 = Dic15.Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).17C2 | 480,412 |
(C5×C4⋊Dic3).18C2 = C5×C12⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).18C2 | 480,748 |
(C5×C4⋊Dic3).19C2 = C5×C12.6Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).19C2 | 480,749 |
(C5×C4⋊Dic3).20C2 = C5×Dic3.Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).20C2 | 480,768 |
(C5×C4⋊Dic3).21C2 = C5×C4.Dic6 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).21C2 | 480,769 |
(C5×C4⋊Dic3).22C2 = C5×C6.Q16 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).22C2 | 480,126 |
(C5×C4⋊Dic3).23C2 = C5×C12.Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).23C2 | 480,127 |
(C5×C4⋊Dic3).24C2 = C5×Q8⋊2Dic3 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).24C2 | 480,154 |
(C5×C4⋊Dic3).25C2 = C5×C12⋊Q8 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).25C2 | 480,767 |
(C5×C4⋊Dic3).26C2 = C5×Q8×Dic3 | φ: C2/C1 → C2 ⊆ Out C5×C4⋊Dic3 | 480 | | (C5xC4:Dic3).26C2 | 480,824 |
(C5×C4⋊Dic3).27C2 = C20×Dic6 | φ: trivial image | 480 | | (C5xC4:Dic3).27C2 | 480,747 |