Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C20

Direct product G=N×Q with N=C4×S3 and Q=C20

Semidirect products G=N:Q with N=C4×S3 and Q=C20
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1C20 = C5×S3×C4⋊C4φ: C20/C10C2 ⊆ Out C4×S3240(C4xS3):1C20480,770
(C4×S3)⋊2C20 = C5×C4⋊C47S3φ: C20/C10C2 ⊆ Out C4×S3240(C4xS3):2C20480,771
(C4×S3)⋊3C20 = C5×C422S3φ: C20/C10C2 ⊆ Out C4×S3240(C4xS3):3C20480,751

Non-split extensions G=N.Q with N=C4×S3 and Q=C20
extensionφ:Q→Out NdρLabelID
(C4×S3).1C20 = C5×S3×M4(2)φ: C20/C10C2 ⊆ Out C4×S31204(C4xS3).1C20480,785
(C4×S3).2C20 = C5×D6.C8φ: C20/C10C2 ⊆ Out C4×S32402(C4xS3).2C20480,117
(C4×S3).3C20 = C10×C8⋊S3φ: C20/C10C2 ⊆ Out C4×S3240(C4xS3).3C20480,779
(C4×S3).4C20 = S3×C80φ: trivial image2402(C4xS3).4C20480,116
(C4×S3).5C20 = S3×C2×C40φ: trivial image240(C4xS3).5C20480,778