Copied to
clipboard

G = C83order 83

Cyclic group

p-group, cyclic, elementary abelian, simple, monomial

Aliases: C83, also denoted Z83, SmallGroup(83,1)

Series: Derived Chief Lower central Upper central Jennings

C1 — C83
C1 — C83
C1 — C83
C1 — C83
C1 — C83

Generators and relations for C83
 G = < a | a83=1 >


Smallest permutation representation of C83
Regular action on 83 points
Generators in S83
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83)

G:=sub<Sym(83)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83)]])

C83 is a maximal subgroup of   D83

83 conjugacy classes

class 1 83A···83CD
order183···83
size11···1

83 irreducible representations

dim11
type+
imageC1C83
kernelC83C1
# reps182

Matrix representation of C83 in GL1(𝔽167) generated by

65
G:=sub<GL(1,GF(167))| [65] >;

C83 in GAP, Magma, Sage, TeX

C_{83}
% in TeX

G:=Group("C83");
// GroupNames label

G:=SmallGroup(83,1);
// by ID

G=gap.SmallGroup(83,1);
# by ID

G:=PCGroup([1,-83]:ExponentLimit:=1);
// Polycyclic

G:=Group<a|a^83=1>;
// generators/relations

Export

Subgroup lattice of C83 in TeX

׿
×
𝔽