Copied to
clipboard

G = C101order 101

Cyclic group

p-group, cyclic, elementary abelian, simple, monomial

Aliases: C101, also denoted Z101, SmallGroup(101,1)

Series: Derived Chief Lower central Upper central Jennings

C1 — C101
C1 — C101
C1 — C101
C1 — C101
C1 — C101

Generators and relations for C101
 G = < a | a101=1 >


Smallest permutation representation of C101
Regular action on 101 points
Generators in S101
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101)

G:=sub<Sym(101)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101)]])

C101 is a maximal subgroup of   D101

101 conjugacy classes

class 1 101A···101CV
order1101···101
size11···1

101 irreducible representations

dim11
type+
imageC1C101
kernelC101C1
# reps1100

Matrix representation of C101 in GL1(𝔽607) generated by

26
G:=sub<GL(1,GF(607))| [26] >;

C101 in GAP, Magma, Sage, TeX

C_{101}
% in TeX

G:=Group("C101");
// GroupNames label

G:=SmallGroup(101,1);
// by ID

G=gap.SmallGroup(101,1);
# by ID

G:=PCGroup([1,-101]:ExponentLimit:=1);
// Polycyclic

G:=Group<a|a^101=1>;
// generators/relations

Export

Subgroup lattice of C101 in TeX

׿
×
𝔽