WaveThresh Reference List
WaveThresh
Help
Help by:
Alphabetic function list,
Topic,
Interrogation,
Help home,
References.
I have tried very hard to resolve all references to home pages and papers.
Please let me know if you know of home pages or papers that I have missed
either by the absence of a link or the absence of a whole paper!
References
A,
B,
C,
D,
E,
F,
G,
H,
I,
H,
K,
L,
M,
N,
O,
P,
Q,
R,
S,
T,
U,
V,
W,
X,
Y, Z.
A
-  Abramovich, F., &
	Benjamini, Y. (1996).
 -  
	Adaptive thresholding of wavelet coefficients.
  Computat. Stat. Data Anal., 22, 351--361.
 -  Abramovich, F., &
  Silverman, B.W. (1998).
 -  Wavelet decomposition approaches to statistical inverse problems.
  Biometrika, 85, 115-129.
 -  Abramovich, F.,
  Sapatinas, T., &
  Silverman, B.W. (1998).
 -  Wavelet thresholding via a Bayesian approach.
  J. R. Statist. Soc. B,  60.
 -  Antoniadis, A. (1996).
 -  Smoothing noisy data with tapered Coiflets series.
 Scand. J. Statist., 23, 313--330.
 -  Antoniadis, A.
 
,
  Gregoire, G., &
  Nason, G.P. (1999).
Density and hazard rate estimation for right censored data using
  wavelet methods.
  J. R. Statist. Soc. B,  61.
B
-  Barber, S., Nason, G.P., & Silverman,
B.W. (2001).
-  Posterior probability intervals for wavelet
thresholding.  University of Bristol research report 01:01.
 -  Bruce, A., & Gao, H.-Y. (1996).
 -  Applied Wavelet Analysis with S-Plus.
	New York: Springer-Verlag.
 -  Buckheit, J.B., & Donoho, D.L. (1995).
 
 -  Improved linear discrimination using time-frequency dictionaries.
  Pages  540-551 of: Laine, A.F., Unser, M.A., & Wickerhauser,
  M.V. (eds), Proc. SPIE. Wavelet Applications in Signal and Image
  Processing III,  vol. 2569. Bellingham, Washington: SPIE.
 
C
-  Cavaretta, A.S.,
  Dahmen, W.
 and Micchelli, C. (1991).
 -  Stationary subdivision. Mem. Amer. Math. Soc.,
  93, 1-186.
 -  Chen, S.S., Donoho, D.L.,  and
Saunders, M.A. (1996).
 -  Atomic decompositions by basis pursuit.
  Tech. rept. 479. Department of Statistics, Stanford University,
  Stanford.
 -  Chipman, H.A.,
	Kolaczyk, E.D.,
	and
McCulloch, R.E. (1997).
 -  Adaptive Bayesian Wavelet Shrinkage.
 J. Am. Statist. Ass., 92, 1413-1421. 
 -   Chipman, H.A., & Wolfson, L.J. (1999).
-  Prior elicitation in the wavelet domain.  In "Bayesian
Inference in Wavelet-Based Models: Lecture Notes in Statistics
141", Muller, P., & Vidakovic, B. (Eds).
 -  Chui, C.K. (1992).
 -  An Introduction to Wavelets.  London: Academic Press.
 -  Clyde, M., Parmigiani, G., & Vidakovic, B. (1998).
 -  Multiple shrinkage and subset selection in wavelets.
   Biometrika 85, (to appear).
 -  Cohen, A.,
	Daubechies, I.
	and Vial, P. (1993).
 -  Wavelets on the interval and fast wavelet
	transforms. Applied and Computational Harmonic Analysis,
	1, 54-81.
	See also this 
	table of computed filter coefficients.
 -  Cohen, A.
  and Dyn, N. (1996).
 -    Nonstationary subdivision schemes and multiresolution analysis.
  SIAM J. Math. Anal. 27, 1745-1769.
 -  Cohen, I., Raz, S., & Malah, D. (1997).
 -  Orthonormal shift-invariant wavelet packet decomposition and representation.
  Sig. Proc., 57, 251-270.
 -  Coifman, R.R., & Donoho, D.L. (1995).
 -  Translation-invariant de-noising.
  Pages  125--150 of: Antoniadis, A., & Oppenheim, G. (eds),
  Wavelets and Statistics, Lecture Notes in Statistics 103.
	New-York: Springer-Verlag.
 -  Coifman, R.R., &
  Saito, N. (1994).
 -  Constructions of local orthonormal bases for classification and
  regression.
  Compt. Rend. Acad. Sci. Paris Ser. A, 319,
  191-196.
 -  Coifman, R.R., &
  Wickerhauser, M.V. (1992).
 -  Entropy-based algorithms for best-basis selection.
  IEEE Trans. Inf. Theor., 38, 713-718. (see Technical Report
  Entropy-based algorithms for best basis selection by the
 same authors).
 -  Crouse, M.S., Nowak, R.D., and Baraniuk, R.G. (1998).
 -  Wavelet-based statistical signal processing using hidden Markov models.
 IEEE Trans. Sig. Proc., 46, (to appear).
  
D
-  Daubechies, I. (1988).
 -  Orthonormal bases of compactly supported wavelets.
  Comms. Pure Appl. Math., 41, 909-996.
 -  Daubechies, I. (1992).
 -  Ten Lectures on Wavelets.
	Philadelphia: SIAM.
 -  Delyon, B., & Juditsky, A. (1995).
 -  Estimating wavelet coefficients.
  Pages  151--168 of: Antoniadis, A., & Oppenheim, G. (eds),
  Wavelets and Statistics, Lecture Notes in Statistics 103.
  New-York: Springer-Verlag.
 -  Deslauriers, G.
 
 and Dubuc, S. (1989)
 Symmetric dyadic interpolation.Constr. Approx.,
  5, 49-68.
 Donoho, D.L. (1992).
	
Interpolating wavelet transforms.
  Tech. rept. 408. Department of Statistics, Stanford University,
  Stanford.
 Donoho, D.L. (1995).
 Nonlinear solution of linear inverse problems by wavelet-vaguelette
  decomposition.
  Appl. Comput. Harm. Anal., 2, 101-126.
  (See Technical Report
	
  Nonlinear solution of linear inverse problems by wavelet-vaguelette
  decomposition.
 Donoho, D.L., & Johnstone, I.M. (1994a).
 Ideal denoising in an orthonormal basis chosen from a library of
  bases.
  Compt. Rend. Acad. Sci. Paris Ser. A, 319,
  1317-1322. (See Technical Report
	
	Ideal denoising in an orthonormal basis chosen from a library of
  bases.).
 Donoho, D.L., & Johnstone, I.M. (1994b).
 Ideal spatial adaptation by wavelet shrinkage.
  Biometrika, 81, 425-455. (See Technical Report,
	
	Ideal spatial adaptation by wavelet shrinkage.)
 Donoho, D.L., & Johnstone, I.M. (1995).
 Adapting to unknown smoothness via wavelet shrinkage.
  J. Am. Statist. Ass., 90, 1200-1224. (See
  Technical Report
	
Adapting to unknown smoothness via wavelet shrinkage.
 Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., &
Picard, D. (1995).
 Wavelet shrinkage: asymptopia? (with discussion).
  J. R. Statist. Soc. B, 57, 301-337.
 Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., &
Picard, D. (1996).
 Density estimation by wavelet thresholding.
  Ann. Statist., 24, 508-539.
 Donovan, G., Geronimo, J.S. and Hardin, D.P. (1996)
 Intertwining multiresolution analyses and the construction of
	piecewise-polynomial wavelets.
  SIAM J. Math. Anal. 27, 1791-1815.
 Downie, T.R. and
  Silverman, B.W.  (1998)
 
	The discrete multiple wavelet transform and thresholding methods
	
	IEEE Trans. Sig. Proc., 46, 2558--2561. 
	
F
-  Fryzlewicz, P. (1999)
-  Wavelets on the interval --- theory and applications.
 	Technical Report, Department of Mathematics,
	University of Bristol.
	
	[PDF], 
	
	[PostScript], 
  
G
-  Gao, H.-Y. (1997).
 -  Choice of thresholds for wavelet shrinkage estimate of the spectrum.
  J. Time Series Anal., 18, 231-251.
 -  Geronimo, J.S., Hardin, D.P. and Massopust, P.R. (1994)
-  Fractal functions and wavelet expansions based on several scaling
	functions.Journal of Approximation Theory,
	78, 373-401.
  
H
-  Hall, P., & Nason, G.P. (1997).
 -  On choosing a non-integer resolution level when using wavelet
  methods.
  Statist. Probab. Lett., 34, 5--11.
 -  
  Hall, P., &
  Patil, P. (1995)
 -  Formulae for mean integrated squared error of nonlinear wavelet-based
  density estimators.
  
  Ann. Statist., 23, 905-928.
 -  Hess-Nielsen, N., & Wickerhauser, M.V. (1996).
 -  Wavelets and time-frequency analysis. Proc. IEEE,
  84, 523-540.
 -  Hill, I.D. (1976).
-  Algorithm AS 100: Normal-Johnson and Johnson-Normal
transformations.   Applied Statistics 25, 190-192.
 -  Hill, I.D., Hill, R., & Holder, R.L. (1976).
-  Algorithm AS99: Fitting Johnson curves by moments.   Applied
Statistics 25, 180-189.
   
J
-  Jawerth, B., & Sweldens, W. (1994).
 -  An overview of wavelet based multiresolution analyses.
  SIAM Rev., 36, 377-412.
 -   Johnson, N.L. (1949).
-  Systems of frequency curves generated by methods of translation.
Biometrika 36, 149-176.
 -  Johnstone, I.M., & Silverman, B.W. (1997).
 -  Wavelet threshold estimators for data with correlated noise.
  J. R. Statist. Soc. B, 59, 319-351.
  
K
-  Kovac, A. (1997).
 -  Wavelet thresholding for unequally spaced data.
  Ph.D. thesis, Department of
	Mathematics, University of Bristol,
	Bristol.
 -  Kovac, A.
	and Silverman, B.W.,
	(2000)
 -  
	Extending the scope of wavelet regression methods by
	coefficient-dependent thresholding.
	
	J. Am. Statist. Ass., 95, (to appear).
 
L
-  Lang, M., Guo, H., Odegard, J.E., Burrus, C.S., & Wells, R.O. (1995).
-  Nonlinear processing of a shift invariant DWT for noise reduction.
  Pages  640--651 of: Szu, H.H. (ed), Proc. SPIE. Wavelet Applications
	II,  vol. 2491.  Bellingham, Washington: SPIE.
 -  Lawton, W. (1993)
-  Applications of complex valued wavelet transforms to subband decomposition.
	IEEE
	Trans. Sig. Proc. 41, 3566-3568.
 -  Learned, R.E., & Willsky, A.S. (1995).
 -  A wavelet packet approach to transient signal classification.
  Appl. Comput. Harm. Anal., 2, 265-278.
   
M
-  Mallat, S.G. (1989a).
 -  Multiresolution approximations and wavelet orthonormal bases of
	L^2(R).
  Trans. Am. Math. Soc., 315, 69-87.
-  Mallat, S.G. (1989b).
 -  A theory for multiresolution signal decomposition: the wavelet
  representation.
  IEEE Trans. Pattn Anal. Mach. Intell., 11, 674-693.
 -  Mallat, S.G.,
  & Zhang, Z. (1993).
 -  Matching pursuit in a time-frequency dictionary.
  IEEE Trans. Sig. Proc., 41, 3397-3415.
 -  McCoy, E.J., Percival, D.B., & Walden, A.T. (1995).
 -  Spectrum estimation via wavelet thresholding of multitaper
  estimators.
  Tech. rept. TR-95-14. Statistics Section, Imperial College, London.
 -  Meyer, Y. (1992).
 -  Wavelets and Operators.
 Cambridge: Cambridge University Press.
 -  Mintzer, F. (1982).
 -  On half-band, third-band and Nth band FIR filters and their design.
  IEEE Trans. Acoust. Speech Sig. Proc., 30, 734-738.
 -  Mintzer, F. (1985).
 -  Filters for distortion-free two-band multirate filter banks.
  IEEE Trans. Acoust. Speech Sig. Proc., 33, 626-630.
 -  Morgan, R. and Nason, G.P., 1999.
 
-  Wavelet shrinkage of itch response data.
	Revue de Statistique Applique, (to appear).
  -  Moulin, P. (1994).
 -  Wavelet thresholding techniques for power spectrum estimation.
  IEEE Trans. Sig. Proc., 42, 3126-3136.
 
N
-  Nason, G.P. (1996).
 -  Wavelet shrinkage using cross-validation.
J. R. Statist. Soc. B, 58, 463-479.
 -  Nason, G.P., & Silverman, B.W. (1994).
 -  The discrete wavelet transform in S.
  J. Comput. Graph. Statist., 3, 163-191.
 -  Nason, G.P., & Silverman, B.W.
 
 (1995).
 The stationary wavelet transform and some statistical applications.
  Pages  281--300 of: Antoniadis, A., & Oppenheim, G. (eds),
  Wavelets and Statistics, Lecture Notes in Statistics 103.
  New-York: Springer-Verlag.
 Nason, G.P., von Sachs, R., &
  Kroisandt, G. (1998).
 Adaptive estimation of the evolutionary wavelet spectrum.
 Nason, G.P., Sapatinas, T. and Sawczenko, A. (1998)
 Statistical modelling of
 time series using non-decimated wavelet representations.
 Neumann, M.H., & von Sachs, R. (1997).
 Wavelet thresholding in anisotropic function classes and application
  to adaptive estimation of evolutionary spectra.
  Ann. Statist., 25, 38-76.
O
-  Ogden, R.T. (1997).
 -  Essential wavelets for statistical applications and data
	analysis.
  Boston: Birkh\"auser.
 -  Ogden, R.T., & Parzen, E. (1996).
 -  Change-point approach to data analytic wavelet thresholding.
  Statist. Comput., 6, 93-99.
 
P
-  Percival, D.B., & Guttorp, P. (1994).
 -  Long-memory processes, the Allan variance and wavelets.
  Pages  325-344 of: Foufoula-Georgiou, E., & Kumar, P. (eds),
  Wavelets in Geophysics.
  San Diego: Academic Press.
 -  Percival, D.B., & Mofjeld, H.O. (1997).
 -  Analysis of subtidal coastal sea level fluctuations using wavelets.
J. Am. Statist. Ass., 92, 868-880. 
 -  Pesquet, J.C., Krim, H., & Carfantan, H. (1996).
 -  Time-invariant orthonormal wavelet representations.
  IEEE Trans. Sig. Proc., 44, 1964-1970.
 
S
-  Saito, N. (1994).
 -  Local feature extraction and its applications using a library of bases.
  Ph.D. thesis, Yale University, New Haven.
 -  Saito, N. and Beylkin, G. (1993).
 -  Multiresolution representations using the autocorrelation functions of
  compactly supported wavelets.
IEEE Trans. Sig.
  Proc., 41, 3584--3590. (see
  
  extended abstract.)
 -  Saito, N., & Coifman, R.R. (1996).
 -  On local feature-extraction for signal classification.
  Z. Angew. Math. Mech., 76, 453-456.
 -  Shensa, M.J. (1992).
 -  Discrete wavelet transforms: wedding the á trous and
  Mallat
  algorithms.
  IEEE Trans. Sig. Proc., 40, 2464-2482.
 -  Smith, M.J.T., & Barnwell, T.P. (1986).
 -  Exact reconstruction techniques for tree-structured subband coders.
  IEEE Trans. Acoust. Speech Sig. Proc., 34, 434-441.
 -  Strang, G. (1993).
 -  Wavelet transforms versus Fourier transforms.
 Bull. (New Series) Am. Math. Soc., 28, 288-305.
 -  Strela, V., Heller, P.N., Strang, G., Topiwala, P. and Heil, C. (1999).
 -  The application of multiwavelet filterbanks to image processing.
 IEEE Trans. Im. Proc., 8, 548-563.
 
V
-  
     Vaidyanathan, P.P. (1990).
 -  Multirate digital filters, filter banks, polyphase networks,
                and applications: a tutorial.
        Proceedings of the IEEE,
	78, 56--93.
 -  Vidakovic, B. (1998).
 -  Nonlinear wavelet shrinkage with Bayes rules and Bayes factors.
J. Am. Statist. Ass., 93, 173-179. See
	
	technical report.
 -  von Sachs, R. (1996).
 -  Adaptively wavelet-smoothed Wigner estimates of evolutionary spectra.
  Z. Angew. Math. Mech., 76, 71-74.
 -  von Sachs, R., & Schneider, K. (1996).
 -  Wavelet smoothing of evolutionary spectra by nonlinear thresholding.
  Appl. Comput. Harm. Anal., 3, 268-282.
 -  von Sachs, R., Nason, G.P., & Kroisandt, G. (1996).
 -  Spectral representation and estimation for locally-stationary wavelet
  processes.
  Proceedings of the workshop ``Spline functions and wavelets'':
  Montreal.  (to appear).
 
W
-  Walden, A.T.,
	& Contreras Cristan, A. (1997)
 
.
 The
	phase-corrected undecimated discrete wavelet packet
  transform and the recurrence of high latitude interplanetary shock waves.
  Tech. rept. TR-97-03. Statistics Section, Imperial College, London.
 Wickerhauser, M.V. (1994).
 Adapted Wavelet Analysis from Theory to Software.
  Wellesley, Massachusetts: A.K. Peters.
X
-  Xia, X.-G., Geronimo, J., Hardin, D. and Suter, B.
	(1996)
-  Design of prefilters for discrete multiwavelet transforms.
	
	IEEE Trans. Sig. Proc., 44, 25--35.