WaveThresh Reference List
WaveThresh
Help
Help by:
Alphabetic function list,
Topic,
Interrogation,
Help home,
References.
I have tried very hard to resolve all references to home pages and papers.
Please let me know if you know of home pages or papers that I have missed
either by the absence of a link or the absence of a whole paper!
References
A,
B,
C,
D,
E,
F,
G,
H,
I,
H,
K,
L,
M,
N,
O,
P,
Q,
R,
S,
T,
U,
V,
W,
X,
Y, Z.
A
- Abramovich, F., &
Benjamini, Y. (1996).
-
Adaptive thresholding of wavelet coefficients.
Computat. Stat. Data Anal., 22, 351--361.
- Abramovich, F., &
Silverman, B.W. (1998).
- Wavelet decomposition approaches to statistical inverse problems.
Biometrika, 85, 115-129.
- Abramovich, F.,
Sapatinas, T., &
Silverman, B.W. (1998).
- Wavelet thresholding via a Bayesian approach.
J. R. Statist. Soc. B, 60.
- Antoniadis, A. (1996).
- Smoothing noisy data with tapered Coiflets series.
Scand. J. Statist., 23, 313--330.
- Antoniadis, A.
,
Gregoire, G., &
Nason, G.P. (1999).
Density and hazard rate estimation for right censored data using
wavelet methods.
J. R. Statist. Soc. B, 61.
B
- Barber, S., Nason, G.P., & Silverman,
B.W. (2001).
- Posterior probability intervals for wavelet
thresholding. University of Bristol research report 01:01.
- Bruce, A., & Gao, H.-Y. (1996).
- Applied Wavelet Analysis with S-Plus.
New York: Springer-Verlag.
- Buckheit, J.B., & Donoho, D.L. (1995).
- Improved linear discrimination using time-frequency dictionaries.
Pages 540-551 of: Laine, A.F., Unser, M.A., & Wickerhauser,
M.V. (eds), Proc. SPIE. Wavelet Applications in Signal and Image
Processing III, vol. 2569. Bellingham, Washington: SPIE.
C
- Cavaretta, A.S.,
Dahmen, W.
and Micchelli, C. (1991).
- Stationary subdivision. Mem. Amer. Math. Soc.,
93, 1-186.
- Chen, S.S., Donoho, D.L., and
Saunders, M.A. (1996).
- Atomic decompositions by basis pursuit.
Tech. rept. 479. Department of Statistics, Stanford University,
Stanford.
- Chipman, H.A.,
Kolaczyk, E.D.,
and
McCulloch, R.E. (1997).
- Adaptive Bayesian Wavelet Shrinkage.
J. Am. Statist. Ass., 92, 1413-1421.
- Chipman, H.A., & Wolfson, L.J. (1999).
- Prior elicitation in the wavelet domain. In "Bayesian
Inference in Wavelet-Based Models: Lecture Notes in Statistics
141", Muller, P., & Vidakovic, B. (Eds).
- Chui, C.K. (1992).
- An Introduction to Wavelets. London: Academic Press.
- Clyde, M., Parmigiani, G., & Vidakovic, B. (1998).
- Multiple shrinkage and subset selection in wavelets.
Biometrika 85, (to appear).
- Cohen, A.,
Daubechies, I.
and Vial, P. (1993).
- Wavelets on the interval and fast wavelet
transforms. Applied and Computational Harmonic Analysis,
1, 54-81.
See also this
table of computed filter coefficients.
- Cohen, A.
and Dyn, N. (1996).
- Nonstationary subdivision schemes and multiresolution analysis.
SIAM J. Math. Anal. 27, 1745-1769.
- Cohen, I., Raz, S., & Malah, D. (1997).
- Orthonormal shift-invariant wavelet packet decomposition and representation.
Sig. Proc., 57, 251-270.
- Coifman, R.R., & Donoho, D.L. (1995).
- Translation-invariant de-noising.
Pages 125--150 of: Antoniadis, A., & Oppenheim, G. (eds),
Wavelets and Statistics, Lecture Notes in Statistics 103.
New-York: Springer-Verlag.
- Coifman, R.R., &
Saito, N. (1994).
- Constructions of local orthonormal bases for classification and
regression.
Compt. Rend. Acad. Sci. Paris Ser. A, 319,
191-196.
- Coifman, R.R., &
Wickerhauser, M.V. (1992).
- Entropy-based algorithms for best-basis selection.
IEEE Trans. Inf. Theor., 38, 713-718. (see Technical Report
Entropy-based algorithms for best basis selection by the
same authors).
- Crouse, M.S., Nowak, R.D., and Baraniuk, R.G. (1998).
- Wavelet-based statistical signal processing using hidden Markov models.
IEEE Trans. Sig. Proc., 46, (to appear).
D
- Daubechies, I. (1988).
- Orthonormal bases of compactly supported wavelets.
Comms. Pure Appl. Math., 41, 909-996.
- Daubechies, I. (1992).
- Ten Lectures on Wavelets.
Philadelphia: SIAM.
- Delyon, B., & Juditsky, A. (1995).
- Estimating wavelet coefficients.
Pages 151--168 of: Antoniadis, A., & Oppenheim, G. (eds),
Wavelets and Statistics, Lecture Notes in Statistics 103.
New-York: Springer-Verlag.
- Deslauriers, G.
and Dubuc, S. (1989)
Symmetric dyadic interpolation.Constr. Approx.,
5, 49-68.
Donoho, D.L. (1992).
Interpolating wavelet transforms.
Tech. rept. 408. Department of Statistics, Stanford University,
Stanford.
Donoho, D.L. (1995).
Nonlinear solution of linear inverse problems by wavelet-vaguelette
decomposition.
Appl. Comput. Harm. Anal., 2, 101-126.
(See Technical Report
Nonlinear solution of linear inverse problems by wavelet-vaguelette
decomposition.
Donoho, D.L., & Johnstone, I.M. (1994a).
Ideal denoising in an orthonormal basis chosen from a library of
bases.
Compt. Rend. Acad. Sci. Paris Ser. A, 319,
1317-1322. (See Technical Report
Ideal denoising in an orthonormal basis chosen from a library of
bases.).
Donoho, D.L., & Johnstone, I.M. (1994b).
Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81, 425-455. (See Technical Report,
Ideal spatial adaptation by wavelet shrinkage.)
Donoho, D.L., & Johnstone, I.M. (1995).
Adapting to unknown smoothness via wavelet shrinkage.
J. Am. Statist. Ass., 90, 1200-1224. (See
Technical Report
Adapting to unknown smoothness via wavelet shrinkage.
Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., &
Picard, D. (1995).
Wavelet shrinkage: asymptopia? (with discussion).
J. R. Statist. Soc. B, 57, 301-337.
Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., &
Picard, D. (1996).
Density estimation by wavelet thresholding.
Ann. Statist., 24, 508-539.
Donovan, G., Geronimo, J.S. and Hardin, D.P. (1996)
Intertwining multiresolution analyses and the construction of
piecewise-polynomial wavelets.
SIAM J. Math. Anal. 27, 1791-1815.
Downie, T.R. and
Silverman, B.W. (1998)
The discrete multiple wavelet transform and thresholding methods
IEEE Trans. Sig. Proc., 46, 2558--2561.
F
- Fryzlewicz, P. (1999)
- Wavelets on the interval --- theory and applications.
Technical Report, Department of Mathematics,
University of Bristol.
[PDF],
[PostScript],
G
- Gao, H.-Y. (1997).
- Choice of thresholds for wavelet shrinkage estimate of the spectrum.
J. Time Series Anal., 18, 231-251.
- Geronimo, J.S., Hardin, D.P. and Massopust, P.R. (1994)
- Fractal functions and wavelet expansions based on several scaling
functions.Journal of Approximation Theory,
78, 373-401.
H
- Hall, P., & Nason, G.P. (1997).
- On choosing a non-integer resolution level when using wavelet
methods.
Statist. Probab. Lett., 34, 5--11.
-
Hall, P., &
Patil, P. (1995)
- Formulae for mean integrated squared error of nonlinear wavelet-based
density estimators.
Ann. Statist., 23, 905-928.
- Hess-Nielsen, N., & Wickerhauser, M.V. (1996).
- Wavelets and time-frequency analysis. Proc. IEEE,
84, 523-540.
- Hill, I.D. (1976).
- Algorithm AS 100: Normal-Johnson and Johnson-Normal
transformations. Applied Statistics 25, 190-192.
- Hill, I.D., Hill, R., & Holder, R.L. (1976).
- Algorithm AS99: Fitting Johnson curves by moments. Applied
Statistics 25, 180-189.
J
- Jawerth, B., & Sweldens, W. (1994).
- An overview of wavelet based multiresolution analyses.
SIAM Rev., 36, 377-412.
- Johnson, N.L. (1949).
- Systems of frequency curves generated by methods of translation.
Biometrika 36, 149-176.
- Johnstone, I.M., & Silverman, B.W. (1997).
- Wavelet threshold estimators for data with correlated noise.
J. R. Statist. Soc. B, 59, 319-351.
K
- Kovac, A. (1997).
- Wavelet thresholding for unequally spaced data.
Ph.D. thesis, Department of
Mathematics, University of Bristol,
Bristol.
- Kovac, A.
and Silverman, B.W.,
(2000)
-
Extending the scope of wavelet regression methods by
coefficient-dependent thresholding.
J. Am. Statist. Ass., 95, (to appear).
L
- Lang, M., Guo, H., Odegard, J.E., Burrus, C.S., & Wells, R.O. (1995).
- Nonlinear processing of a shift invariant DWT for noise reduction.
Pages 640--651 of: Szu, H.H. (ed), Proc. SPIE. Wavelet Applications
II, vol. 2491. Bellingham, Washington: SPIE.
- Lawton, W. (1993)
- Applications of complex valued wavelet transforms to subband decomposition.
IEEE
Trans. Sig. Proc. 41, 3566-3568.
- Learned, R.E., & Willsky, A.S. (1995).
- A wavelet packet approach to transient signal classification.
Appl. Comput. Harm. Anal., 2, 265-278.
M
- Mallat, S.G. (1989a).
- Multiresolution approximations and wavelet orthonormal bases of
L^2(R).
Trans. Am. Math. Soc., 315, 69-87.
- Mallat, S.G. (1989b).
- A theory for multiresolution signal decomposition: the wavelet
representation.
IEEE Trans. Pattn Anal. Mach. Intell., 11, 674-693.
- Mallat, S.G.,
& Zhang, Z. (1993).
- Matching pursuit in a time-frequency dictionary.
IEEE Trans. Sig. Proc., 41, 3397-3415.
- McCoy, E.J., Percival, D.B., & Walden, A.T. (1995).
- Spectrum estimation via wavelet thresholding of multitaper
estimators.
Tech. rept. TR-95-14. Statistics Section, Imperial College, London.
- Meyer, Y. (1992).
- Wavelets and Operators.
Cambridge: Cambridge University Press.
- Mintzer, F. (1982).
- On half-band, third-band and Nth band FIR filters and their design.
IEEE Trans. Acoust. Speech Sig. Proc., 30, 734-738.
- Mintzer, F. (1985).
- Filters for distortion-free two-band multirate filter banks.
IEEE Trans. Acoust. Speech Sig. Proc., 33, 626-630.
- Morgan, R. and Nason, G.P., 1999.
- Wavelet shrinkage of itch response data.
Revue de Statistique Applique, (to appear).
- Moulin, P. (1994).
- Wavelet thresholding techniques for power spectrum estimation.
IEEE Trans. Sig. Proc., 42, 3126-3136.
N
- Nason, G.P. (1996).
- Wavelet shrinkage using cross-validation.
J. R. Statist. Soc. B, 58, 463-479.
- Nason, G.P., & Silverman, B.W. (1994).
- The discrete wavelet transform in S.
J. Comput. Graph. Statist., 3, 163-191.
- Nason, G.P., & Silverman, B.W.
(1995).
The stationary wavelet transform and some statistical applications.
Pages 281--300 of: Antoniadis, A., & Oppenheim, G. (eds),
Wavelets and Statistics, Lecture Notes in Statistics 103.
New-York: Springer-Verlag.
Nason, G.P., von Sachs, R., &
Kroisandt, G. (1998).
Adaptive estimation of the evolutionary wavelet spectrum.
Nason, G.P., Sapatinas, T. and Sawczenko, A. (1998)
Statistical modelling of
time series using non-decimated wavelet representations.
Neumann, M.H., & von Sachs, R. (1997).
Wavelet thresholding in anisotropic function classes and application
to adaptive estimation of evolutionary spectra.
Ann. Statist., 25, 38-76.
O
- Ogden, R.T. (1997).
- Essential wavelets for statistical applications and data
analysis.
Boston: Birkh\"auser.
- Ogden, R.T., & Parzen, E. (1996).
- Change-point approach to data analytic wavelet thresholding.
Statist. Comput., 6, 93-99.
P
- Percival, D.B., & Guttorp, P. (1994).
- Long-memory processes, the Allan variance and wavelets.
Pages 325-344 of: Foufoula-Georgiou, E., & Kumar, P. (eds),
Wavelets in Geophysics.
San Diego: Academic Press.
- Percival, D.B., & Mofjeld, H.O. (1997).
- Analysis of subtidal coastal sea level fluctuations using wavelets.
J. Am. Statist. Ass., 92, 868-880.
- Pesquet, J.C., Krim, H., & Carfantan, H. (1996).
- Time-invariant orthonormal wavelet representations.
IEEE Trans. Sig. Proc., 44, 1964-1970.
S
- Saito, N. (1994).
- Local feature extraction and its applications using a library of bases.
Ph.D. thesis, Yale University, New Haven.
- Saito, N. and Beylkin, G. (1993).
- Multiresolution representations using the autocorrelation functions of
compactly supported wavelets.
IEEE Trans. Sig.
Proc., 41, 3584--3590. (see
extended abstract.)
- Saito, N., & Coifman, R.R. (1996).
- On local feature-extraction for signal classification.
Z. Angew. Math. Mech., 76, 453-456.
- Shensa, M.J. (1992).
- Discrete wavelet transforms: wedding the á trous and
Mallat
algorithms.
IEEE Trans. Sig. Proc., 40, 2464-2482.
- Smith, M.J.T., & Barnwell, T.P. (1986).
- Exact reconstruction techniques for tree-structured subband coders.
IEEE Trans. Acoust. Speech Sig. Proc., 34, 434-441.
- Strang, G. (1993).
- Wavelet transforms versus Fourier transforms.
Bull. (New Series) Am. Math. Soc., 28, 288-305.
- Strela, V., Heller, P.N., Strang, G., Topiwala, P. and Heil, C. (1999).
- The application of multiwavelet filterbanks to image processing.
IEEE Trans. Im. Proc., 8, 548-563.
V
-
Vaidyanathan, P.P. (1990).
- Multirate digital filters, filter banks, polyphase networks,
and applications: a tutorial.
Proceedings of the IEEE,
78, 56--93.
- Vidakovic, B. (1998).
- Nonlinear wavelet shrinkage with Bayes rules and Bayes factors.
J. Am. Statist. Ass., 93, 173-179. See
technical report.
- von Sachs, R. (1996).
- Adaptively wavelet-smoothed Wigner estimates of evolutionary spectra.
Z. Angew. Math. Mech., 76, 71-74.
- von Sachs, R., & Schneider, K. (1996).
- Wavelet smoothing of evolutionary spectra by nonlinear thresholding.
Appl. Comput. Harm. Anal., 3, 268-282.
- von Sachs, R., Nason, G.P., & Kroisandt, G. (1996).
- Spectral representation and estimation for locally-stationary wavelet
processes.
Proceedings of the workshop ``Spline functions and wavelets'':
Montreal. (to appear).
W
- Walden, A.T.,
& Contreras Cristan, A. (1997)
.
The
phase-corrected undecimated discrete wavelet packet
transform and the recurrence of high latitude interplanetary shock waves.
Tech. rept. TR-97-03. Statistics Section, Imperial College, London.
Wickerhauser, M.V. (1994).
Adapted Wavelet Analysis from Theory to Software.
Wellesley, Massachusetts: A.K. Peters.
X
- Xia, X.-G., Geronimo, J., Hardin, D. and Suter, B.
(1996)
- Design of prefilters for discrete multiwavelet transforms.
IEEE Trans. Sig. Proc., 44, 25--35.