Copied to
clipboard

G = C2xC26order 52 = 22·13

Abelian group of type [2,26]

direct product, abelian, monomial, 2-elementary

Aliases: C2xC26, SmallGroup(52,5)

Series: Derived Chief Lower central Upper central

C1 — C2xC26
C1C13C26 — C2xC26
C1 — C2xC26
C1 — C2xC26

Generators and relations for C2xC26
 G = < a,b | a2=b26=1, ab=ba >

Subgroups: 10, all normal (4 characteristic)
Quotients: C1, C2, C22, C13, C26, C2xC26

Smallest permutation representation of C2xC26
Regular action on 52 points
Generators in S52
(1 51)(2 52)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 49)(26 50)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)

G:=sub<Sym(52)| (1,51)(2,52)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)>;

G:=Group( (1,51)(2,52)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52) );

G=PermutationGroup([[(1,51),(2,52),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,49),(26,50)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)]])

C2xC26 is a maximal subgroup of   C13:D4  C13:A4

52 conjugacy classes

class 1 2A2B2C13A···13L26A···26AJ
order122213···1326···26
size11111···11···1

52 irreducible representations

dim1111
type++
imageC1C2C13C26
kernelC2xC26C26C22C2
# reps131236

Matrix representation of C2xC26 in GL2(F53) generated by

520
052
,
100
038
G:=sub<GL(2,GF(53))| [52,0,0,52],[10,0,0,38] >;

C2xC26 in GAP, Magma, Sage, TeX

C_2\times C_{26}
% in TeX

G:=Group("C2xC26");
// GroupNames label

G:=SmallGroup(52,5);
// by ID

G=gap.SmallGroup(52,5);
# by ID

G:=PCGroup([3,-2,-2,-13]);
// Polycyclic

G:=Group<a,b|a^2=b^26=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C2xC26 in TeX

׿
x
:
Z
F
o
wr
Q
<