Copied to
clipboard

G = (C2xC4).5D8order 128 = 27

5th non-split extension by C2xC4 of D8 acting via D8/C2=D4

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2xC4).5D8, C4:C4.13D4, (C2xD4).17D4, C22.16(C2xD8), (C22xC4).50D4, C2.9(C22:D8), C23.527(C2xD4), C22.D8:2C2, C22.SD16:8C2, C22:C8.6C22, C4:D4.11C22, (C22xC4).16C23, C22.137C22wrC2, C22.43(C8:C22), C2.7(C23.7D4), C2.10(D4.10D4), C23.81C23:2C2, C22.M4(2):4C2, C22.31C24.2C2, C2.C42.23C22, (C2xC4).205(C2xD4), (C2xC4:C4).21C22, SmallGroup(128,342)

Series: Derived Chief Lower central Upper central Jennings

C1C22xC4 — (C2xC4).5D8
C1C2C22C23C22xC4C2xC4:C4C22.31C24 — (C2xC4).5D8
C1C22C22xC4 — (C2xC4).5D8
C1C22C22xC4 — (C2xC4).5D8
C1C2C22C22xC4 — (C2xC4).5D8

Generators and relations for (C2xC4).5D8
 G = < a,b,c,d | a2=b4=c8=1, d2=b2, cbc-1=dbd-1=ab=ba, cac-1=ab2, ad=da, dcd-1=b2c-1 >

Subgroups: 324 in 127 conjugacy classes, 34 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2xC4, C2xC4, D4, Q8, C23, C23, C22:C4, C4:C4, C4:C4, C2xC8, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C2.C42, C2.C42, C22:C8, D4:C4, C2.D8, C2xC4:C4, C2xC4:C4, C4:D4, C4:D4, C22:Q8, C2xC4oD4, C22.M4(2), C22.SD16, C23.81C23, C22.D8, C22.31C24, (C2xC4).5D8
Quotients: C1, C2, C22, D4, C23, D8, C2xD4, C22wrC2, C2xD8, C8:C22, C22:D8, D4.10D4, C23.7D4, (C2xC4).5D8

Character table of (C2xC4).5D8

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K8A8B8C8D
 size 11112288444488888888888
ρ111111111111111111111111    trivial
ρ21111111-11-1-11-11-11-11-1-11-11    linear of order 2
ρ3111111111111-111-11-1-1-1-1-1-1    linear of order 2
ρ41111111-11-1-1111-1-1-1-111-11-1    linear of order 2
ρ5111111-1-111111-1-11111-1-1-1-1    linear of order 2
ρ6111111-111-1-11-1-111-11-11-11-1    linear of order 2
ρ7111111-1-11111-1-1-1-11-1-11111    linear of order 2
ρ8111111-111-1-111-11-1-1-11-11-11    linear of order 2
ρ92222-2-2-20-200202000000000    orthogonal lifted from D4
ρ102222-2-202200-200-200000000    orthogonal lifted from D4
ρ1122222200-2-2-2-200002000000    orthogonal lifted from D4
ρ122222-2-20-2200-200200000000    orthogonal lifted from D4
ρ1322222200-222-20000-2000000    orthogonal lifted from D4
ρ142222-2-220-20020-2000000000    orthogonal lifted from D4
ρ1522-2-2-22000-22000000002-2-22    orthogonal lifted from D8
ρ1622-2-2-22000-2200000000-222-2    orthogonal lifted from D8
ρ1722-2-2-220002-200000000-2-222    orthogonal lifted from D8
ρ1822-2-2-220002-20000000022-2-2    orthogonal lifted from D8
ρ1944-4-44-400000000000000000    orthogonal lifted from C8:C22
ρ204-4-4400000000-20000020000    symplectic lifted from D4.10D4, Schur index 2
ρ214-4-4400000000200000-20000    symplectic lifted from D4.10D4, Schur index 2
ρ224-44-4000000000002i0-2i00000    complex lifted from C23.7D4
ρ234-44-400000000000-2i02i00000    complex lifted from C23.7D4

Smallest permutation representation of (C2xC4).5D8
On 32 points
Generators in S32
(2 29)(4 31)(6 25)(8 27)(9 24)(11 18)(13 20)(15 22)
(1 21 28 14)(2 22 29 15)(3 16 30 23)(4 9 31 24)(5 17 32 10)(6 18 25 11)(7 12 26 19)(8 13 27 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 28 21)(2 20 29 13)(3 12 30 19)(4 18 31 11)(5 10 32 17)(6 24 25 9)(7 16 26 23)(8 22 27 15)

G:=sub<Sym(32)| (2,29)(4,31)(6,25)(8,27)(9,24)(11,18)(13,20)(15,22), (1,21,28,14)(2,22,29,15)(3,16,30,23)(4,9,31,24)(5,17,32,10)(6,18,25,11)(7,12,26,19)(8,13,27,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,28,21)(2,20,29,13)(3,12,30,19)(4,18,31,11)(5,10,32,17)(6,24,25,9)(7,16,26,23)(8,22,27,15)>;

G:=Group( (2,29)(4,31)(6,25)(8,27)(9,24)(11,18)(13,20)(15,22), (1,21,28,14)(2,22,29,15)(3,16,30,23)(4,9,31,24)(5,17,32,10)(6,18,25,11)(7,12,26,19)(8,13,27,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,28,21)(2,20,29,13)(3,12,30,19)(4,18,31,11)(5,10,32,17)(6,24,25,9)(7,16,26,23)(8,22,27,15) );

G=PermutationGroup([[(2,29),(4,31),(6,25),(8,27),(9,24),(11,18),(13,20),(15,22)], [(1,21,28,14),(2,22,29,15),(3,16,30,23),(4,9,31,24),(5,17,32,10),(6,18,25,11),(7,12,26,19),(8,13,27,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,28,21),(2,20,29,13),(3,12,30,19),(4,18,31,11),(5,10,32,17),(6,24,25,9),(7,16,26,23),(8,22,27,15)]])

Matrix representation of (C2xC4).5D8 in GL6(F17)

100000
010000
001000
000100
0000160
0000016
,
100000
010000
004000
0001300
000040
0000013
,
3140000
330000
0000013
0000130
0013000
0001300
,
100000
0160000
0013000
0001300
0000013
0000130

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,13],[3,3,0,0,0,0,14,3,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,13,0,0,0,0,13,0,0,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,0,13,0,0,0,0,13,0] >;

(C2xC4).5D8 in GAP, Magma, Sage, TeX

(C_2\times C_4)._5D_8
% in TeX

G:=Group("(C2xC4).5D8");
// GroupNames label

G:=SmallGroup(128,342);
// by ID

G=gap.SmallGroup(128,342);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,422,352,1123,570,521,136,1411]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=b^2,c*b*c^-1=d*b*d^-1=a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,d*c*d^-1=b^2*c^-1>;
// generators/relations

Export

Character table of (C2xC4).5D8 in TeX

׿
x
:
Z
F
o
wr
Q
<