extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4).1D4 = C42.D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 16 | 4+ | (C2xD4).1D4 | 128,134 |
(C2×D4).2D4 = C42.3D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).2D4 | 128,136 |
(C2×D4).3D4 = C8⋊C4⋊C4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).3D4 | 128,138 |
(C2×D4).4D4 = (C2×D4).D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).4D4 | 128,139 |
(C2×D4).5D4 = C4⋊1D4⋊C4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 16 | 4+ | (C2xD4).5D4 | 128,140 |
(C2×D4).6D4 = (C4×C8)⋊6C4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).6D4 | 128,141 |
(C2×D4).7D4 = C8⋊C4⋊5C4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).7D4 | 128,144 |
(C2×D4).8D4 = (C4×C8)⋊C4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).8D4 | 128,146 |
(C2×D4).9D4 = C4⋊C4.D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).9D4 | 128,329 |
(C2×D4).10D4 = (C2×C4)⋊D8 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).10D4 | 128,330 |
(C2×D4).11D4 = C23⋊2SD16 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).11D4 | 128,333 |
(C2×D4).12D4 = C4⋊C4.6D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).12D4 | 128,335 |
(C2×D4).13D4 = Q8⋊D4⋊C2 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).13D4 | 128,336 |
(C2×D4).14D4 = C24.12D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).14D4 | 128,338 |
(C2×D4).15D4 = C23.5D8 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).15D4 | 128,339 |
(C2×D4).16D4 = C4⋊C4.12D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).16D4 | 128,341 |
(C2×D4).17D4 = (C2×C4).5D8 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).17D4 | 128,342 |
(C2×D4).18D4 = C24.15D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).18D4 | 128,344 |
(C2×D4).19D4 = C24.16D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).19D4 | 128,345 |
(C2×D4).20D4 = C4⋊C4.18D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).20D4 | 128,347 |
(C2×D4).21D4 = C4⋊C4.19D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).21D4 | 128,348 |
(C2×D4).22D4 = C24.18D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).22D4 | 128,350 |
(C2×D4).23D4 = C42.181C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 64 | | (C2xD4).23D4 | 128,352 |
(C2×D4).24D4 = C42.191C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 64 | | (C2xD4).24D4 | 128,362 |
(C2×D4).25D4 = C42.201C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 64 | | (C2xD4).25D4 | 128,372 |
(C2×D4).26D4 = Q8⋊3SD16 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 64 | | (C2xD4).26D4 | 128,374 |
(C2×D4).27D4 = C42.C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).27D4 | 128,387 |
(C2×D4).28D4 = C42.2C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 64 | | (C2xD4).28D4 | 128,388 |
(C2×D4).29D4 = C42.3C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 64 | | (C2xD4).29D4 | 128,389 |
(C2×D4).30D4 = C42.5C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | | (C2xD4).30D4 | 128,391 |
(C2×D4).31D4 = C42.6C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 64 | | (C2xD4).31D4 | 128,392 |
(C2×D4).32D4 = C42.7C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 64 | | (C2xD4).32D4 | 128,393 |
(C2×D4).33D4 = C42.8C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 64 | | (C2xD4).33D4 | 128,394 |
(C2×D4).34D4 = C42.10C23 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 64 | | (C2xD4).34D4 | 128,396 |
(C2×D4).35D4 = C42.13D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).35D4 | 128,930 |
(C2×D4).36D4 = C42.15D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).36D4 | 128,934 |
(C2×D4).37D4 = C42.16D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).37D4 | 128,935 |
(C2×D4).38D4 = C42.17D4 | φ: D4/C1 → D4 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).38D4 | 128,936 |
(C2×D4).39D4 = C24.5D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).39D4 | 128,122 |
(C2×D4).40D4 = C23.2C42 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).40D4 | 128,123 |
(C2×D4).41D4 = C24.6D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).41D4 | 128,125 |
(C2×D4).42D4 = (C22×C8)⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).42D4 | 128,127 |
(C2×D4).43D4 = Q8⋊D8 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).43D4 | 128,353 |
(C2×D4).44D4 = C42.185C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).44D4 | 128,356 |
(C2×D4).45D4 = D4⋊3D8 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).45D4 | 128,357 |
(C2×D4).46D4 = C42.189C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).46D4 | 128,360 |
(C2×D4).47D4 = Q8⋊2SD16 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).47D4 | 128,363 |
(C2×D4).48D4 = C42.195C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).48D4 | 128,366 |
(C2×D4).49D4 = D4.SD16 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).49D4 | 128,367 |
(C2×D4).50D4 = C42.199C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).50D4 | 128,370 |
(C2×D4).51D4 = Q8.D8 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).51D4 | 128,373 |
(C2×D4).52D4 = C42.207C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).52D4 | 128,378 |
(C2×D4).53D4 = D4.7D8 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).53D4 | 128,379 |
(C2×D4).54D4 = C42.211C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).54D4 | 128,382 |
(C2×D4).55D4 = C42.213C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).55D4 | 128,384 |
(C2×D4).56D4 = D4⋊4SD16 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).56D4 | 128,386 |
(C2×D4).57D4 = C8⋊D8 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).57D4 | 128,417 |
(C2×D4).58D4 = C8⋊2D8 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).58D4 | 128,419 |
(C2×D4).59D4 = C8.D8 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).59D4 | 128,421 |
(C2×D4).60D4 = C8⋊3SD16 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).60D4 | 128,423 |
(C2×D4).61D4 = C8⋊4SD16 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).61D4 | 128,425 |
(C2×D4).62D4 = C8.8SD16 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).62D4 | 128,427 |
(C2×D4).63D4 = C42.248C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).63D4 | 128,429 |
(C2×D4).64D4 = C42.250C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).64D4 | 128,431 |
(C2×D4).65D4 = C42.252C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).65D4 | 128,433 |
(C2×D4).66D4 = C42.254C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).66D4 | 128,435 |
(C2×D4).67D4 = 2+ 1+4⋊2C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).67D4 | 128,522 |
(C2×D4).68D4 = 2+ 1+4.2C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).68D4 | 128,523 |
(C2×D4).69D4 = 2+ 1+4⋊4C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).69D4 | 128,526 |
(C2×D4).70D4 = C4○D4.D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).70D4 | 128,527 |
(C2×D4).71D4 = M4(2).44D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).71D4 | 128,613 |
(C2×D4).72D4 = M4(2)⋊19D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).72D4 | 128,616 |
(C2×D4).73D4 = C24.23D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).73D4 | 128,617 |
(C2×D4).74D4 = C24.24D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4).74D4 | 128,619 |
(C2×D4).75D4 = C25.C22 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4).75D4 | 128,621 |
(C2×D4).76D4 = C24.26D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).76D4 | 128,622 |
(C2×D4).77D4 = (C2×C8)⋊D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).77D4 | 128,623 |
(C2×D4).78D4 = C42.5D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).78D4 | 128,636 |
(C2×D4).79D4 = C4.(C4×D4) | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).79D4 | 128,641 |
(C2×D4).80D4 = (C2×C8)⋊4D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).80D4 | 128,642 |
(C2×D4).81D4 = C42⋊D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).81D4 | 128,643 |
(C2×D4).82D4 = C24.28D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).82D4 | 128,645 |
(C2×D4).83D4 = M4(2)⋊21D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).83D4 | 128,646 |
(C2×D4).84D4 = M4(2).50D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).84D4 | 128,647 |
(C2×D4).85D4 = C23⋊3SD16 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).85D4 | 128,732 |
(C2×D4).86D4 = C42.129D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).86D4 | 128,735 |
(C2×D4).87D4 = C42⋊10D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).87D4 | 128,736 |
(C2×D4).88D4 = C42.130D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).88D4 | 128,737 |
(C2×D4).89D4 = M4(2)⋊4D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).89D4 | 128,739 |
(C2×D4).90D4 = M4(2).D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).90D4 | 128,741 |
(C2×D4).91D4 = (C22×D8).C2 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).91D4 | 128,744 |
(C2×D4).92D4 = (C2×C4)⋊3SD16 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).92D4 | 128,745 |
(C2×D4).93D4 = (C2×C8)⋊20D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).93D4 | 128,746 |
(C2×D4).94D4 = (C2×C8).41D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).94D4 | 128,747 |
(C2×D4).95D4 = (C2×C8).2D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).95D4 | 128,749 |
(C2×D4).96D4 = M4(2).4D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).96D4 | 128,750 |
(C2×D4).97D4 = M4(2).5D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).97D4 | 128,751 |
(C2×D4).98D4 = M4(2).6D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).98D4 | 128,752 |
(C2×D4).99D4 = C24.83D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).99D4 | 128,765 |
(C2×D4).100D4 = C24.84D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).100D4 | 128,766 |
(C2×D4).101D4 = M4(2)⋊6D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).101D4 | 128,769 |
(C2×D4).102D4 = M4(2).7D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).102D4 | 128,770 |
(C2×D4).103D4 = C42⋊11D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).103D4 | 128,771 |
(C2×D4).104D4 = C42⋊12D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).104D4 | 128,772 |
(C2×D4).105D4 = C4⋊C4⋊7D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).105D4 | 128,773 |
(C2×D4).106D4 = C4⋊C4.94D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).106D4 | 128,774 |
(C2×D4).107D4 = C4⋊C4.96D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).107D4 | 128,777 |
(C2×D4).108D4 = C4⋊C4.97D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).108D4 | 128,778 |
(C2×D4).109D4 = M4(2).8D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).109D4 | 128,780 |
(C2×D4).110D4 = M4(2).9D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).110D4 | 128,781 |
(C2×D4).111D4 = C42.131D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).111D4 | 128,782 |
(C2×D4).112D4 = M4(2).10D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).112D4 | 128,783 |
(C2×D4).113D4 = M4(2).11D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).113D4 | 128,784 |
(C2×D4).114D4 = C22⋊C4.7D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).114D4 | 128,785 |
(C2×D4).115D4 = (C2×C4)⋊3D8 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).115D4 | 128,786 |
(C2×D4).116D4 = (C2×C4)⋊5SD16 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).116D4 | 128,787 |
(C2×D4).117D4 = (C2×C4).24D8 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).117D4 | 128,803 |
(C2×D4).118D4 = C42⋊8C4⋊C2 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).118D4 | 128,805 |
(C2×D4).119D4 = (C2×C8).55D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).119D4 | 128,810 |
(C2×D4).120D4 = (C2×C8).165D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).120D4 | 128,811 |
(C2×D4).121D4 = C42.9D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).121D4 | 128,812 |
(C2×D4).122D4 = (C2×C8).D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).122D4 | 128,813 |
(C2×D4).123D4 = C2×C2≀C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4).123D4 | 128,850 |
(C2×D4).124D4 = C2×C23.D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).124D4 | 128,851 |
(C2×D4).125D4 = C4○C2≀C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).125D4 | 128,852 |
(C2×D4).126D4 = C24.36D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).126D4 | 128,853 |
(C2×D4).127D4 = C2≀C4⋊C2 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).127D4 | 128,854 |
(C2×D4).128D4 = C23.(C2×D4) | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).128D4 | 128,855 |
(C2×D4).129D4 = C2×C42⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | | (C2xD4).129D4 | 128,856 |
(C2×D4).130D4 = C2×C42⋊3C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).130D4 | 128,857 |
(C2×D4).131D4 = C4⋊Q8⋊29C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).131D4 | 128,858 |
(C2×D4).132D4 = C24.39D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).132D4 | 128,859 |
(C2×D4).133D4 = C4.4D4⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).133D4 | 128,860 |
(C2×D4).134D4 = C4⋊Q8⋊C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).134D4 | 128,861 |
(C2×D4).135D4 = (C2×D4).135D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).135D4 | 128,864 |
(C2×D4).136D4 = C4⋊1D4.C4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).136D4 | 128,866 |
(C2×D4).137D4 = (C2×D4).137D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).137D4 | 128,867 |
(C2×D4).138D4 = C23.584C24 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).138D4 | 128,1416 |
(C2×D4).139D4 = C24.393C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).139D4 | 128,1418 |
(C2×D4).140D4 = C23.597C24 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).140D4 | 128,1429 |
(C2×D4).141D4 = C24.407C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).141D4 | 128,1433 |
(C2×D4).142D4 = C23.608C24 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).142D4 | 128,1440 |
(C2×D4).143D4 = C24.411C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).143D4 | 128,1441 |
(C2×D4).144D4 = C23.617C24 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).144D4 | 128,1449 |
(C2×D4).145D4 = C23.624C24 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).145D4 | 128,1456 |
(C2×D4).146D4 = D4.(C2×D4) | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).146D4 | 128,1741 |
(C2×D4).147D4 = C42.13C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).147D4 | 128,1754 |
(C2×D4).148D4 = C2×C23.7D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).148D4 | 128,1756 |
(C2×D4).149D4 = C23.10C24 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).149D4 | 128,1760 |
(C2×D4).150D4 = C42.15C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).150D4 | 128,1774 |
(C2×D4).151D4 = M4(2).37D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).151D4 | 128,1800 |
(C2×D4).152D4 = M4(2).38D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).152D4 | 128,1801 |
(C2×D4).153D4 = C4.2+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).153D4 | 128,1930 |
(C2×D4).154D4 = C4.142+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).154D4 | 128,1931 |
(C2×D4).155D4 = C4.152+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).155D4 | 128,1932 |
(C2×D4).156D4 = C4.162+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).156D4 | 128,1933 |
(C2×D4).157D4 = C4.172+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).157D4 | 128,1934 |
(C2×D4).158D4 = C4.182+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).158D4 | 128,1935 |
(C2×D4).159D4 = C4.192+ 1+4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).159D4 | 128,1936 |
(C2×D4).160D4 = D8⋊10D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).160D4 | 128,1999 |
(C2×D4).161D4 = SD16⋊7D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).161D4 | 128,2000 |
(C2×D4).162D4 = SD16⋊8D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).162D4 | 128,2001 |
(C2×D4).163D4 = Q16⋊10D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).163D4 | 128,2003 |
(C2×D4).164D4 = D8⋊5D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).164D4 | 128,2005 |
(C2×D4).165D4 = SD16⋊2D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).165D4 | 128,2007 |
(C2×D4).166D4 = Q16⋊4D4 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).166D4 | 128,2009 |
(C2×D4).167D4 = C42.42C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).167D4 | 128,2039 |
(C2×D4).168D4 = C42.44C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).168D4 | 128,2041 |
(C2×D4).169D4 = C42.46C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).169D4 | 128,2043 |
(C2×D4).170D4 = C42.48C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).170D4 | 128,2045 |
(C2×D4).171D4 = C42.50C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).171D4 | 128,2047 |
(C2×D4).172D4 = C42.52C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).172D4 | 128,2049 |
(C2×D4).173D4 = C42.54C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).173D4 | 128,2051 |
(C2×D4).174D4 = C42.56C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).174D4 | 128,2053 |
(C2×D4).175D4 = C42.471C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).175D4 | 128,2054 |
(C2×D4).176D4 = C42.472C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 32 | | (C2xD4).176D4 | 128,2055 |
(C2×D4).177D4 = C42.475C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).177D4 | 128,2058 |
(C2×D4).178D4 = C42.476C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).178D4 | 128,2059 |
(C2×D4).179D4 = C42.61C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).179D4 | 128,2079 |
(C2×D4).180D4 = C42.62C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).180D4 | 128,2080 |
(C2×D4).181D4 = C42.63C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).181D4 | 128,2081 |
(C2×D4).182D4 = C42.64C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).182D4 | 128,2082 |
(C2×D4).183D4 = C42.492C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).183D4 | 128,2083 |
(C2×D4).184D4 = C42.493C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).184D4 | 128,2084 |
(C2×D4).185D4 = C42.496C23 | φ: D4/C2 → C22 ⊆ Out C2×D4 | 64 | | (C2xD4).185D4 | 128,2087 |
(C2×D4).186D4 = C8⋊8D8 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).186D4 | 128,397 |
(C2×D4).187D4 = C8⋊7D8 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).187D4 | 128,399 |
(C2×D4).188D4 = C8.28D8 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).188D4 | 128,401 |
(C2×D4).189D4 = C8⋊11SD16 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).189D4 | 128,403 |
(C2×D4).190D4 = C8⋊10SD16 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).190D4 | 128,405 |
(C2×D4).191D4 = D4.1Q16 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).191D4 | 128,407 |
(C2×D4).192D4 = D4.2SD16 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).192D4 | 128,409 |
(C2×D4).193D4 = D4.3SD16 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).193D4 | 128,411 |
(C2×D4).194D4 = D4.2D8 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).194D4 | 128,413 |
(C2×D4).195D4 = D4.Q16 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).195D4 | 128,415 |
(C2×D4).196D4 = C24.167C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).196D4 | 128,531 |
(C2×D4).197D4 = C42.96D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).197D4 | 128,532 |
(C2×D4).198D4 = C42.98D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).198D4 | 128,534 |
(C2×D4).199D4 = C42.100D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).199D4 | 128,536 |
(C2×D4).200D4 = (C2×D4).24Q8 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).200D4 | 128,544 |
(C2×D4).201D4 = (C2×C8).103D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).201D4 | 128,545 |
(C2×D4).202D4 = C4○D4.4Q8 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).202D4 | 128,547 |
(C2×D4).203D4 = C4○D4.5Q8 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).203D4 | 128,548 |
(C2×D4).204D4 = (C2×SD16)⋊14C4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).204D4 | 128,609 |
(C2×D4).205D4 = (C2×C4)⋊9D8 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).205D4 | 128,611 |
(C2×D4).206D4 = M4(2).48D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).206D4 | 128,639 |
(C2×D4).207D4 = M4(2).49D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).207D4 | 128,640 |
(C2×D4).208D4 = C24.258C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).208D4 | 128,1157 |
(C2×D4).209D4 = C23.327C24 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).209D4 | 128,1159 |
(C2×D4).210D4 = C24.299C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).210D4 | 128,1218 |
(C2×D4).211D4 = C23.434C24 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).211D4 | 128,1266 |
(C2×D4).212D4 = C42⋊21D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).212D4 | 128,1276 |
(C2×D4).213D4 = C42.170D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).213D4 | 128,1279 |
(C2×D4).214D4 = C2×D4.D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).214D4 | 128,1762 |
(C2×D4).215D4 = C2×D4.2D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).215D4 | 128,1763 |
(C2×D4).216D4 = (C2×C8)⋊11D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).216D4 | 128,1789 |
(C2×D4).217D4 = (C2×C8)⋊12D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).217D4 | 128,1790 |
(C2×D4).218D4 = C8.D4⋊C2 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).218D4 | 128,1791 |
(C2×D4).219D4 = (C2×C8)⋊13D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).219D4 | 128,1792 |
(C2×D4).220D4 = (C2×C8)⋊14D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).220D4 | 128,1793 |
(C2×D4).221D4 = M4(2)⋊16D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).221D4 | 128,1794 |
(C2×D4).222D4 = M4(2)⋊17D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).222D4 | 128,1795 |
(C2×D4).223D4 = C2×D4.3D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).223D4 | 128,1796 |
(C2×D4).224D4 = C2×D4.4D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).224D4 | 128,1797 |
(C2×D4).225D4 = C2×D4.5D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).225D4 | 128,1798 |
(C2×D4).226D4 = M4(2).10C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).226D4 | 128,1799 |
(C2×D4).227D4 = D8⋊12D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).227D4 | 128,2012 |
(C2×D4).228D4 = SD16⋊10D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).228D4 | 128,2014 |
(C2×D4).229D4 = D8⋊13D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).229D4 | 128,2015 |
(C2×D4).230D4 = SD16⋊11D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).230D4 | 128,2016 |
(C2×D4).231D4 = Q16⋊12D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).231D4 | 128,2017 |
(C2×D4).232D4 = Q16⋊13D4 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).232D4 | 128,2019 |
(C2×D4).233D4 = C42.461C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).233D4 | 128,2028 |
(C2×D4).234D4 = C42.462C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).234D4 | 128,2029 |
(C2×D4).235D4 = C42.465C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).235D4 | 128,2032 |
(C2×D4).236D4 = C42.466C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).236D4 | 128,2033 |
(C2×D4).237D4 = C42.467C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).237D4 | 128,2034 |
(C2×D4).238D4 = C42.468C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).238D4 | 128,2035 |
(C2×D4).239D4 = C42.469C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).239D4 | 128,2036 |
(C2×D4).240D4 = C42.470C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).240D4 | 128,2037 |
(C2×D4).241D4 = C42.485C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).241D4 | 128,2068 |
(C2×D4).242D4 = C42.486C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).242D4 | 128,2069 |
(C2×D4).243D4 = C42.488C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).243D4 | 128,2071 |
(C2×D4).244D4 = C42.489C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).244D4 | 128,2072 |
(C2×D4).245D4 = C42.490C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).245D4 | 128,2073 |
(C2×D4).246D4 = C42.491C23 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).246D4 | 128,2074 |
(C2×D4).247D4 = C8.C24 | φ: D4/C4 → C2 ⊆ Out C2×D4 | 32 | 4 | (C2xD4).247D4 | 128,2316 |
(C2×D4).248D4 = D4⋊D8 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).248D4 | 128,351 |
(C2×D4).249D4 = D4⋊SD16 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).249D4 | 128,354 |
(C2×D4).250D4 = Q8⋊3D8 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).250D4 | 128,359 |
(C2×D4).251D4 = D4⋊2SD16 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).251D4 | 128,361 |
(C2×D4).252D4 = D4⋊Q16 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).252D4 | 128,364 |
(C2×D4).253D4 = D4.3Q16 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).253D4 | 128,369 |
(C2×D4).254D4 = D4.D8 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).254D4 | 128,371 |
(C2×D4).255D4 = D4.5SD16 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).255D4 | 128,375 |
(C2×D4).256D4 = D4⋊3Q16 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).256D4 | 128,376 |
(C2×D4).257D4 = D4⋊4Q16 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).257D4 | 128,381 |
(C2×D4).258D4 = Q8⋊4SD16 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).258D4 | 128,383 |
(C2×D4).259D4 = C25⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4).259D4 | 128,513 |
(C2×D4).260D4 = C24.165C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).260D4 | 128,514 |
(C2×D4).261D4 = C25.C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 16 | | (C2xD4).261D4 | 128,515 |
(C2×D4).262D4 = (C23×C4).C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).262D4 | 128,517 |
(C2×D4).263D4 = C23.35D8 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).263D4 | 128,518 |
(C2×D4).264D4 = C24.65D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).264D4 | 128,520 |
(C2×D4).265D4 = 2+ 1+4⋊3C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).265D4 | 128,524 |
(C2×D4).266D4 = 2- 1+4⋊2C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).266D4 | 128,525 |
(C2×D4).267D4 = (C22×Q8)⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).267D4 | 128,528 |
(C2×D4).268D4 = (C2×C42)⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).268D4 | 128,559 |
(C2×D4).269D4 = C24.C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).269D4 | 128,560 |
(C2×D4).270D4 = C24.6(C2×C4) | φ: D4/C22 → C2 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).270D4 | 128,561 |
(C2×D4).271D4 = C4≀C2⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).271D4 | 128,591 |
(C2×D4).272D4 = C42⋊9(C2×C4) | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).272D4 | 128,592 |
(C2×D4).273D4 = C2.(C4×D8) | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).273D4 | 128,594 |
(C2×D4).274D4 = D4⋊(C4⋊C4) | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).274D4 | 128,596 |
(C2×D4).275D4 = C8.C22⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).275D4 | 128,614 |
(C2×D4).276D4 = C8⋊C22⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).276D4 | 128,615 |
(C2×D4).277D4 = C42.426D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).277D4 | 128,638 |
(C2×D4).278D4 = C24.94D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).278D4 | 128,1137 |
(C2×D4).279D4 = C24.243C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).279D4 | 128,1138 |
(C2×D4).280D4 = C23.318C24 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).280D4 | 128,1150 |
(C2×D4).281D4 = C24.563C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).281D4 | 128,1151 |
(C2×D4).282D4 = C24.254C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).282D4 | 128,1152 |
(C2×D4).283D4 = C23.322C24 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).283D4 | 128,1154 |
(C2×D4).284D4 = C24.264C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).284D4 | 128,1164 |
(C2×D4).285D4 = C23.335C24 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).285D4 | 128,1167 |
(C2×D4).286D4 = C24.269C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).286D4 | 128,1175 |
(C2×D4).287D4 = C23.344C24 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).287D4 | 128,1176 |
(C2×D4).288D4 = C23.345C24 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).288D4 | 128,1177 |
(C2×D4).289D4 = C24.271C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).289D4 | 128,1179 |
(C2×D4).290D4 = C23.C24 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).290D4 | 128,1615 |
(C2×D4).291D4 = 2- 1+4⋊5C4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 16 | 4 | (C2xD4).291D4 | 128,1633 |
(C2×D4).292D4 = C2×C22⋊SD16 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).292D4 | 128,1729 |
(C2×D4).293D4 = C2×D4.7D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).293D4 | 128,1733 |
(C2×D4).294D4 = (C2×Q8)⋊16D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).294D4 | 128,1742 |
(C2×D4).295D4 = Q8.(C2×D4) | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).295D4 | 128,1743 |
(C2×D4).296D4 = (C2×Q8)⋊17D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).296D4 | 128,1745 |
(C2×D4).297D4 = C2×D4.9D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).297D4 | 128,1747 |
(C2×D4).298D4 = C2×D4.8D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).298D4 | 128,1748 |
(C2×D4).299D4 = C2×D4.10D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).299D4 | 128,1749 |
(C2×D4).300D4 = M4(2).C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).300D4 | 128,1752 |
(C2×D4).301D4 = (C2×D4).301D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).301D4 | 128,1828 |
(C2×D4).302D4 = (C2×D4).302D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).302D4 | 128,1829 |
(C2×D4).303D4 = (C2×D4).303D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).303D4 | 128,1830 |
(C2×D4).304D4 = (C2×D4).304D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).304D4 | 128,1831 |
(C2×D4).305D4 = D8⋊9D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).305D4 | 128,1996 |
(C2×D4).306D4 = SD16⋊D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).306D4 | 128,1997 |
(C2×D4).307D4 = SD16⋊6D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).307D4 | 128,1998 |
(C2×D4).308D4 = Q16⋊9D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).308D4 | 128,2002 |
(C2×D4).309D4 = D8⋊4D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).309D4 | 128,2004 |
(C2×D4).310D4 = SD16⋊1D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).310D4 | 128,2006 |
(C2×D4).311D4 = SD16⋊3D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).311D4 | 128,2008 |
(C2×D4).312D4 = Q16⋊5D4 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).312D4 | 128,2010 |
(C2×D4).313D4 = C42.41C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).313D4 | 128,2038 |
(C2×D4).314D4 = C42.43C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).314D4 | 128,2040 |
(C2×D4).315D4 = C42.45C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).315D4 | 128,2042 |
(C2×D4).316D4 = C42.47C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).316D4 | 128,2044 |
(C2×D4).317D4 = C42.49C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).317D4 | 128,2046 |
(C2×D4).318D4 = C42.51C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).318D4 | 128,2048 |
(C2×D4).319D4 = C42.53C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).319D4 | 128,2050 |
(C2×D4).320D4 = C42.55C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).320D4 | 128,2052 |
(C2×D4).321D4 = C42.473C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).321D4 | 128,2056 |
(C2×D4).322D4 = C42.474C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | | (C2xD4).322D4 | 128,2057 |
(C2×D4).323D4 = C42.477C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).323D4 | 128,2060 |
(C2×D4).324D4 = C42.478C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).324D4 | 128,2061 |
(C2×D4).325D4 = C42.479C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).325D4 | 128,2062 |
(C2×D4).326D4 = C42.480C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).326D4 | 128,2063 |
(C2×D4).327D4 = C42.481C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).327D4 | 128,2064 |
(C2×D4).328D4 = C42.482C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).328D4 | 128,2065 |
(C2×D4).329D4 = C42.57C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).329D4 | 128,2075 |
(C2×D4).330D4 = C42.58C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).330D4 | 128,2076 |
(C2×D4).331D4 = C42.59C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).331D4 | 128,2077 |
(C2×D4).332D4 = C42.60C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).332D4 | 128,2078 |
(C2×D4).333D4 = C42.494C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).333D4 | 128,2085 |
(C2×D4).334D4 = C42.495C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).334D4 | 128,2086 |
(C2×D4).335D4 = C42.497C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).335D4 | 128,2088 |
(C2×D4).336D4 = C42.498C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 64 | | (C2xD4).336D4 | 128,2089 |
(C2×D4).337D4 = D8⋊C23 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 16 | 8+ | (C2xD4).337D4 | 128,2317 |
(C2×D4).338D4 = C4.C25 | φ: D4/C22 → C2 ⊆ Out C2×D4 | 32 | 8- | (C2xD4).338D4 | 128,2318 |
(C2×D4).339D4 = D4×C22⋊C4 | φ: trivial image | 32 | | (C2xD4).339D4 | 128,1070 |
(C2×D4).340D4 = C24.549C23 | φ: trivial image | 64 | | (C2xD4).340D4 | 128,1071 |
(C2×D4).341D4 = D4×C4⋊C4 | φ: trivial image | 64 | | (C2xD4).341D4 | 128,1080 |
(C2×D4).342D4 = C23.231C24 | φ: trivial image | 64 | | (C2xD4).342D4 | 128,1081 |
(C2×D4).343D4 = 2+ 1+4⋊5C4 | φ: trivial image | 32 | | (C2xD4).343D4 | 128,1629 |
(C2×D4).344D4 = 2- 1+4⋊4C4 | φ: trivial image | 64 | | (C2xD4).344D4 | 128,1630 |
(C2×D4).345D4 = C4○D4.7Q8 | φ: trivial image | 64 | | (C2xD4).345D4 | 128,1644 |
(C2×D4).346D4 = C4○D4.8Q8 | φ: trivial image | 64 | | (C2xD4).346D4 | 128,1645 |
(C2×D4).347D4 = D4×D8 | φ: trivial image | 32 | | (C2xD4).347D4 | 128,2011 |
(C2×D4).348D4 = D4×SD16 | φ: trivial image | 32 | | (C2xD4).348D4 | 128,2013 |
(C2×D4).349D4 = D4×Q16 | φ: trivial image | 64 | | (C2xD4).349D4 | 128,2018 |
(C2×D4).350D4 = D4⋊4D8 | φ: trivial image | 32 | | (C2xD4).350D4 | 128,2026 |
(C2×D4).351D4 = D4⋊7SD16 | φ: trivial image | 32 | | (C2xD4).351D4 | 128,2027 |
(C2×D4).352D4 = D4⋊8SD16 | φ: trivial image | 64 | | (C2xD4).352D4 | 128,2030 |
(C2×D4).353D4 = D4⋊5Q16 | φ: trivial image | 64 | | (C2xD4).353D4 | 128,2031 |
(C2×D4).354D4 = D4⋊5D8 | φ: trivial image | 64 | | (C2xD4).354D4 | 128,2066 |
(C2×D4).355D4 = D4⋊9SD16 | φ: trivial image | 64 | | (C2xD4).355D4 | 128,2067 |
(C2×D4).356D4 = D4⋊6Q16 | φ: trivial image | 64 | | (C2xD4).356D4 | 128,2070 |
(C2×D4).357D4 = C2×D4○D8 | φ: trivial image | 32 | | (C2xD4).357D4 | 128,2313 |
(C2×D4).358D4 = C2×D4○SD16 | φ: trivial image | 32 | | (C2xD4).358D4 | 128,2314 |
(C2×D4).359D4 = C2×Q8○D8 | φ: trivial image | 64 | | (C2xD4).359D4 | 128,2315 |