p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×C4)⋊6M4(2), (C23×C4).15C4, C24.106(C2×C4), (C22×C4).199D4, C22⋊C8.119C22, C22.26(C23⋊C4), C24.4C4.11C2, C2.7(C24.4C4), C23.164(C22×C4), (C22×C4).427C23, (C23×C4).198C22, C22.16(C2×M4(2)), C23.166(C22⋊C4), C22.9(C4.10D4), C22.M4(2)⋊12C2, (C2×C4⋊C4).32C4, C2.7(C2×C23⋊C4), (C22×C4⋊C4).8C2, (C2×C4).1124(C2×D4), (C22×C4).69(C2×C4), C2.5(C2×C4.10D4), (C2×C4⋊C4).735C22, (C2×C4).69(C22⋊C4), C22.145(C2×C22⋊C4), SmallGroup(128,195)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×C4)⋊M4(2)
G = < a,b,c,d | a2=b4=c8=d2=1, ab=ba, cac-1=ab2, ad=da, cbc-1=ab-1, bd=db, dcd=c5 >
Subgroups: 308 in 156 conjugacy classes, 52 normal (16 characteristic)
C1, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C23, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C22⋊C8, C22⋊C8, C2×C4⋊C4, C2×C4⋊C4, C2×M4(2), C23×C4, C22.M4(2), C24.4C4, C22×C4⋊C4, (C2×C4)⋊M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, M4(2), C22×C4, C2×D4, C23⋊C4, C4.10D4, C2×C22⋊C4, C2×M4(2), C24.4C4, C2×C23⋊C4, C2×C4.10D4, (C2×C4)⋊M4(2)
(2 32)(4 26)(6 28)(8 30)(10 18)(12 20)(14 22)(16 24)
(1 15 31 23)(2 24 32 16)(3 17 25 9)(4 10 26 18)(5 11 27 19)(6 20 28 12)(7 21 29 13)(8 14 30 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 27)(2 32)(3 29)(4 26)(5 31)(6 28)(7 25)(8 30)(9 21)(10 18)(11 23)(12 20)(13 17)(14 22)(15 19)(16 24)
G:=sub<Sym(32)| (2,32)(4,26)(6,28)(8,30)(10,18)(12,20)(14,22)(16,24), (1,15,31,23)(2,24,32,16)(3,17,25,9)(4,10,26,18)(5,11,27,19)(6,20,28,12)(7,21,29,13)(8,14,30,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24)>;
G:=Group( (2,32)(4,26)(6,28)(8,30)(10,18)(12,20)(14,22)(16,24), (1,15,31,23)(2,24,32,16)(3,17,25,9)(4,10,26,18)(5,11,27,19)(6,20,28,12)(7,21,29,13)(8,14,30,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24) );
G=PermutationGroup([[(2,32),(4,26),(6,28),(8,30),(10,18),(12,20),(14,22),(16,24)], [(1,15,31,23),(2,24,32,16),(3,17,25,9),(4,10,26,18),(5,11,27,19),(6,20,28,12),(7,21,29,13),(8,14,30,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,27),(2,32),(3,29),(4,26),(5,31),(6,28),(7,25),(8,30),(9,21),(10,18),(11,23),(12,20),(13,17),(14,22),(15,19),(16,24)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | M4(2) | C23⋊C4 | C4.10D4 |
kernel | (C2×C4)⋊M4(2) | C22.M4(2) | C24.4C4 | C22×C4⋊C4 | C2×C4⋊C4 | C23×C4 | C22×C4 | C2×C4 | C22 | C22 |
# reps | 1 | 4 | 2 | 1 | 4 | 4 | 4 | 8 | 2 | 2 |
Matrix representation of (C2×C4)⋊M4(2) ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 9 | 0 | 16 | 0 |
0 | 0 | 14 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 2 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 |
0 | 0 | 0 | 9 | 4 | 15 |
0 | 0 | 4 | 14 | 0 | 13 |
0 | 16 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 11 | 16 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 1 | 16 | 7 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,9,14,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,16,0,4,0,0,2,1,9,14,0,0,0,0,4,0,0,0,0,0,15,13],[0,4,0,0,0,0,16,0,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,16,0,0,1,11,13,7,0,0,0,16,0,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16] >;
(C2×C4)⋊M4(2) in GAP, Magma, Sage, TeX
(C_2\times C_4)\rtimes M_4(2)
% in TeX
G:=Group("(C2xC4):M4(2)");
// GroupNames label
G:=SmallGroup(128,195);
// by ID
G=gap.SmallGroup(128,195);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,1430,1123,851,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^8=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,c*b*c^-1=a*b^-1,b*d=d*b,d*c*d=c^5>;
// generators/relations