Copied to
clipboard

G = C8×C16order 128 = 27

Abelian group of type [8,16]

direct product, p-group, abelian, monomial

Aliases: C8×C16, SmallGroup(128,42)

Series: Derived Chief Lower central Upper central Jennings

C1 — C8×C16
C1C2C22C2×C4C42C4×C8C82 — C8×C16
C1 — C8×C16
C1 — C8×C16
C1C2C2C2C2C2×C4C2×C4C4×C8 — C8×C16

Generators and relations for C8×C16
 G = < a,b | a8=b16=1, ab=ba >


Smallest permutation representation of C8×C16
Regular action on 128 points
Generators in S128
(1 40 63 65 109 96 25 117)(2 41 64 66 110 81 26 118)(3 42 49 67 111 82 27 119)(4 43 50 68 112 83 28 120)(5 44 51 69 97 84 29 121)(6 45 52 70 98 85 30 122)(7 46 53 71 99 86 31 123)(8 47 54 72 100 87 32 124)(9 48 55 73 101 88 17 125)(10 33 56 74 102 89 18 126)(11 34 57 75 103 90 19 127)(12 35 58 76 104 91 20 128)(13 36 59 77 105 92 21 113)(14 37 60 78 106 93 22 114)(15 38 61 79 107 94 23 115)(16 39 62 80 108 95 24 116)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)

G:=sub<Sym(128)| (1,40,63,65,109,96,25,117)(2,41,64,66,110,81,26,118)(3,42,49,67,111,82,27,119)(4,43,50,68,112,83,28,120)(5,44,51,69,97,84,29,121)(6,45,52,70,98,85,30,122)(7,46,53,71,99,86,31,123)(8,47,54,72,100,87,32,124)(9,48,55,73,101,88,17,125)(10,33,56,74,102,89,18,126)(11,34,57,75,103,90,19,127)(12,35,58,76,104,91,20,128)(13,36,59,77,105,92,21,113)(14,37,60,78,106,93,22,114)(15,38,61,79,107,94,23,115)(16,39,62,80,108,95,24,116), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)>;

G:=Group( (1,40,63,65,109,96,25,117)(2,41,64,66,110,81,26,118)(3,42,49,67,111,82,27,119)(4,43,50,68,112,83,28,120)(5,44,51,69,97,84,29,121)(6,45,52,70,98,85,30,122)(7,46,53,71,99,86,31,123)(8,47,54,72,100,87,32,124)(9,48,55,73,101,88,17,125)(10,33,56,74,102,89,18,126)(11,34,57,75,103,90,19,127)(12,35,58,76,104,91,20,128)(13,36,59,77,105,92,21,113)(14,37,60,78,106,93,22,114)(15,38,61,79,107,94,23,115)(16,39,62,80,108,95,24,116), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128) );

G=PermutationGroup([[(1,40,63,65,109,96,25,117),(2,41,64,66,110,81,26,118),(3,42,49,67,111,82,27,119),(4,43,50,68,112,83,28,120),(5,44,51,69,97,84,29,121),(6,45,52,70,98,85,30,122),(7,46,53,71,99,86,31,123),(8,47,54,72,100,87,32,124),(9,48,55,73,101,88,17,125),(10,33,56,74,102,89,18,126),(11,34,57,75,103,90,19,127),(12,35,58,76,104,91,20,128),(13,36,59,77,105,92,21,113),(14,37,60,78,106,93,22,114),(15,38,61,79,107,94,23,115),(16,39,62,80,108,95,24,116)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)]])

128 conjugacy classes

class 1 2A2B2C4A···4L8A···8AV16A···16BL
order12224···48···816···16
size11111···11···11···1

128 irreducible representations

dim11111111
type+++
imageC1C2C2C4C4C8C8C16
kernelC8×C16C82C4×C16C4×C8C2×C16C16C2×C8C8
# reps11248321664

Matrix representation of C8×C16 in GL2(𝔽17) generated by

80
04
,
140
03
G:=sub<GL(2,GF(17))| [8,0,0,4],[14,0,0,3] >;

C8×C16 in GAP, Magma, Sage, TeX

C_8\times C_{16}
% in TeX

G:=Group("C8xC16");
// GroupNames label

G:=SmallGroup(128,42);
// by ID

G=gap.SmallGroup(128,42);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,28,64,100,136,172]);
// Polycyclic

G:=Group<a,b|a^8=b^16=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C8×C16 in TeX

׿
×
𝔽