p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊3D8, C42.186C23, D4⋊C8⋊8C2, C4⋊D8⋊4C2, C4⋊C4.22D4, C4.26(C2×D8), D4⋊6D4⋊1C2, (C2×D4).45D4, C4.4D8⋊1C2, C4⋊C8.3C22, C4⋊Q8.8C22, C4.53(C4○D8), C4.10D8⋊1C2, (C4×C8).14C22, C4.57(C8⋊C22), (C4×D4).21C22, C2.16(D4⋊D4), C2.12(C22⋊D8), C4⋊1D4.10C22, C2.12(D4.8D4), C22.152C22≀C2, (C2×C4).943(C2×D4), SmallGroup(128,357)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊3D8
G = < a,b,c,d | a4=b2=c8=d2=1, bab=cac-1=dad=a-1, cbc-1=a-1b, dbd=ab, dcd=c-1 >
Subgroups: 344 in 128 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, D4⋊C4, C4⋊C8, C2×C4⋊C4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C4⋊1D4, C4⋊Q8, C2×D8, C2×C4○D4, D4⋊C8, C4.10D8, C4⋊D8, C4.4D8, D4⋊6D4, D4⋊3D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C22≀C2, C2×D8, C4○D8, C8⋊C22, C22⋊D8, D4⋊D4, D4.8D4, D4⋊3D8
Character table of D4⋊3D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | 0 | -√2 | 0 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | 0 | √2 | 0 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | 0 | √2 | 0 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | 0 | -√2 | 0 | √2 | orthogonal lifted from D8 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√2 | 0 | √2 | 0 | complex lifted from C4○D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | √2 | 0 | -√2 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | -√2 | 0 | √2 | 0 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √2 | 0 | -√2 | 0 | complex lifted from C4○D8 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.8D4 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.8D4 |
(1 56 64 34)(2 35 57 49)(3 50 58 36)(4 37 59 51)(5 52 60 38)(6 39 61 53)(7 54 62 40)(8 33 63 55)(9 42 23 28)(10 29 24 43)(11 44 17 30)(12 31 18 45)(13 46 19 32)(14 25 20 47)(15 48 21 26)(16 27 22 41)
(1 43)(2 11)(3 45)(4 13)(5 47)(6 15)(7 41)(8 9)(10 34)(12 36)(14 38)(16 40)(17 57)(18 50)(19 59)(20 52)(21 61)(22 54)(23 63)(24 56)(25 60)(26 39)(27 62)(28 33)(29 64)(30 35)(31 58)(32 37)(42 55)(44 49)(46 51)(48 53)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 8)(3 7)(4 6)(9 30)(10 29)(11 28)(12 27)(13 26)(14 25)(15 32)(16 31)(17 42)(18 41)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)(33 49)(34 56)(35 55)(36 54)(37 53)(38 52)(39 51)(40 50)(57 63)(58 62)(59 61)
G:=sub<Sym(64)| (1,56,64,34)(2,35,57,49)(3,50,58,36)(4,37,59,51)(5,52,60,38)(6,39,61,53)(7,54,62,40)(8,33,63,55)(9,42,23,28)(10,29,24,43)(11,44,17,30)(12,31,18,45)(13,46,19,32)(14,25,20,47)(15,48,21,26)(16,27,22,41), (1,43)(2,11)(3,45)(4,13)(5,47)(6,15)(7,41)(8,9)(10,34)(12,36)(14,38)(16,40)(17,57)(18,50)(19,59)(20,52)(21,61)(22,54)(23,63)(24,56)(25,60)(26,39)(27,62)(28,33)(29,64)(30,35)(31,58)(32,37)(42,55)(44,49)(46,51)(48,53), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,8)(3,7)(4,6)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,32)(16,31)(17,42)(18,41)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(33,49)(34,56)(35,55)(36,54)(37,53)(38,52)(39,51)(40,50)(57,63)(58,62)(59,61)>;
G:=Group( (1,56,64,34)(2,35,57,49)(3,50,58,36)(4,37,59,51)(5,52,60,38)(6,39,61,53)(7,54,62,40)(8,33,63,55)(9,42,23,28)(10,29,24,43)(11,44,17,30)(12,31,18,45)(13,46,19,32)(14,25,20,47)(15,48,21,26)(16,27,22,41), (1,43)(2,11)(3,45)(4,13)(5,47)(6,15)(7,41)(8,9)(10,34)(12,36)(14,38)(16,40)(17,57)(18,50)(19,59)(20,52)(21,61)(22,54)(23,63)(24,56)(25,60)(26,39)(27,62)(28,33)(29,64)(30,35)(31,58)(32,37)(42,55)(44,49)(46,51)(48,53), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,8)(3,7)(4,6)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,32)(16,31)(17,42)(18,41)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(33,49)(34,56)(35,55)(36,54)(37,53)(38,52)(39,51)(40,50)(57,63)(58,62)(59,61) );
G=PermutationGroup([[(1,56,64,34),(2,35,57,49),(3,50,58,36),(4,37,59,51),(5,52,60,38),(6,39,61,53),(7,54,62,40),(8,33,63,55),(9,42,23,28),(10,29,24,43),(11,44,17,30),(12,31,18,45),(13,46,19,32),(14,25,20,47),(15,48,21,26),(16,27,22,41)], [(1,43),(2,11),(3,45),(4,13),(5,47),(6,15),(7,41),(8,9),(10,34),(12,36),(14,38),(16,40),(17,57),(18,50),(19,59),(20,52),(21,61),(22,54),(23,63),(24,56),(25,60),(26,39),(27,62),(28,33),(29,64),(30,35),(31,58),(32,37),(42,55),(44,49),(46,51),(48,53)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,8),(3,7),(4,6),(9,30),(10,29),(11,28),(12,27),(13,26),(14,25),(15,32),(16,31),(17,42),(18,41),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43),(33,49),(34,56),(35,55),(36,54),(37,53),(38,52),(39,51),(40,50),(57,63),(58,62),(59,61)]])
Matrix representation of D4⋊3D8 ►in GL4(𝔽17) generated by
16 | 15 | 0 | 0 |
1 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
6 | 6 | 0 | 0 |
14 | 11 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
4 | 8 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 0 | 6 |
0 | 0 | 14 | 6 |
1 | 0 | 0 | 0 |
16 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 16 |
G:=sub<GL(4,GF(17))| [16,1,0,0,15,1,0,0,0,0,1,0,0,0,0,1],[6,14,0,0,6,11,0,0,0,0,16,0,0,0,0,16],[4,0,0,0,8,13,0,0,0,0,0,14,0,0,6,6],[1,16,0,0,0,16,0,0,0,0,1,1,0,0,0,16] >;
D4⋊3D8 in GAP, Magma, Sage, TeX
D_4\rtimes_3D_8
% in TeX
G:=Group("D4:3D8");
// GroupNames label
G:=SmallGroup(128,357);
// by ID
G=gap.SmallGroup(128,357);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,456,422,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations
Export