p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8.3Q16, C42.197C23, C4⋊C4.27D4, Q8⋊C8.4C2, C4⋊C8.8C22, (C2×Q8).47D4, C4.17(C2×Q16), C4.57(C4○D8), (C4×C8).19C22, Q8⋊3Q8.1C2, C4.Q16.2C2, C4⋊Q8.18C22, C4.10D8.1C2, C4.SD16.1C2, (C4×Q8).28C22, C4.61(C8.C22), C2.17(D4.8D4), C2.17(D4.7D4), C22.163C22≀C2, C2.12(C22⋊Q16), (C2×C4).954(C2×D4), SmallGroup(128,368)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8.Q16
G = < a,b,c,d | a4=c8=1, b2=a2, d2=a2c4, bab-1=dad-1=a-1, ac=ca, cbc-1=a-1b, bd=db, dcd-1=a2c-1 >
Subgroups: 184 in 94 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C2.D8, C4×Q8, C4×Q8, C42.C2, C4⋊Q8, C4⋊Q8, Q8⋊C8, C4.10D8, C4.Q16, C4.SD16, Q8⋊3Q8, Q8.Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C22≀C2, C2×Q16, C4○D8, C8.C22, C22⋊Q16, D4.7D4, D4.8D4, Q8.Q16
Character table of Q8.Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | complex lifted from C4○D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | complex lifted from C4○D8 |
ρ23 | 4 | 4 | -4 | -4 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ24 | 4 | -4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.8D4 |
ρ26 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.8D4 |
(1 127 68 9)(2 128 69 10)(3 121 70 11)(4 122 71 12)(5 123 72 13)(6 124 65 14)(7 125 66 15)(8 126 67 16)(17 25 49 59)(18 26 50 60)(19 27 51 61)(20 28 52 62)(21 29 53 63)(22 30 54 64)(23 31 55 57)(24 32 56 58)(33 100 43 111)(34 101 44 112)(35 102 45 105)(36 103 46 106)(37 104 47 107)(38 97 48 108)(39 98 41 109)(40 99 42 110)(73 91 88 117)(74 92 81 118)(75 93 82 119)(76 94 83 120)(77 95 84 113)(78 96 85 114)(79 89 86 115)(80 90 87 116)
(1 53 68 21)(2 64 69 30)(3 23 70 55)(4 32 71 58)(5 49 72 17)(6 60 65 26)(7 19 66 51)(8 28 67 62)(9 63 127 29)(10 22 128 54)(11 31 121 57)(12 56 122 24)(13 59 123 25)(14 18 124 50)(15 27 125 61)(16 52 126 20)(33 82 43 75)(34 120 44 94)(35 77 45 84)(36 96 46 114)(37 86 47 79)(38 116 48 90)(39 73 41 88)(40 92 42 118)(74 110 81 99)(76 101 83 112)(78 106 85 103)(80 97 87 108)(89 107 115 104)(91 98 117 109)(93 111 119 100)(95 102 113 105)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 88 72 77)(2 80 65 83)(3 86 66 75)(4 78 67 81)(5 84 68 73)(6 76 69 87)(7 82 70 79)(8 74 71 85)(9 117 123 95)(10 90 124 120)(11 115 125 93)(12 96 126 118)(13 113 127 91)(14 94 128 116)(15 119 121 89)(16 92 122 114)(17 45 53 39)(18 34 54 48)(19 43 55 37)(20 40 56 46)(21 41 49 35)(22 38 50 44)(23 47 51 33)(24 36 52 42)(25 102 63 109)(26 112 64 97)(27 100 57 107)(28 110 58 103)(29 98 59 105)(30 108 60 101)(31 104 61 111)(32 106 62 99)
G:=sub<Sym(128)| (1,127,68,9)(2,128,69,10)(3,121,70,11)(4,122,71,12)(5,123,72,13)(6,124,65,14)(7,125,66,15)(8,126,67,16)(17,25,49,59)(18,26,50,60)(19,27,51,61)(20,28,52,62)(21,29,53,63)(22,30,54,64)(23,31,55,57)(24,32,56,58)(33,100,43,111)(34,101,44,112)(35,102,45,105)(36,103,46,106)(37,104,47,107)(38,97,48,108)(39,98,41,109)(40,99,42,110)(73,91,88,117)(74,92,81,118)(75,93,82,119)(76,94,83,120)(77,95,84,113)(78,96,85,114)(79,89,86,115)(80,90,87,116), (1,53,68,21)(2,64,69,30)(3,23,70,55)(4,32,71,58)(5,49,72,17)(6,60,65,26)(7,19,66,51)(8,28,67,62)(9,63,127,29)(10,22,128,54)(11,31,121,57)(12,56,122,24)(13,59,123,25)(14,18,124,50)(15,27,125,61)(16,52,126,20)(33,82,43,75)(34,120,44,94)(35,77,45,84)(36,96,46,114)(37,86,47,79)(38,116,48,90)(39,73,41,88)(40,92,42,118)(74,110,81,99)(76,101,83,112)(78,106,85,103)(80,97,87,108)(89,107,115,104)(91,98,117,109)(93,111,119,100)(95,102,113,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,88,72,77)(2,80,65,83)(3,86,66,75)(4,78,67,81)(5,84,68,73)(6,76,69,87)(7,82,70,79)(8,74,71,85)(9,117,123,95)(10,90,124,120)(11,115,125,93)(12,96,126,118)(13,113,127,91)(14,94,128,116)(15,119,121,89)(16,92,122,114)(17,45,53,39)(18,34,54,48)(19,43,55,37)(20,40,56,46)(21,41,49,35)(22,38,50,44)(23,47,51,33)(24,36,52,42)(25,102,63,109)(26,112,64,97)(27,100,57,107)(28,110,58,103)(29,98,59,105)(30,108,60,101)(31,104,61,111)(32,106,62,99)>;
G:=Group( (1,127,68,9)(2,128,69,10)(3,121,70,11)(4,122,71,12)(5,123,72,13)(6,124,65,14)(7,125,66,15)(8,126,67,16)(17,25,49,59)(18,26,50,60)(19,27,51,61)(20,28,52,62)(21,29,53,63)(22,30,54,64)(23,31,55,57)(24,32,56,58)(33,100,43,111)(34,101,44,112)(35,102,45,105)(36,103,46,106)(37,104,47,107)(38,97,48,108)(39,98,41,109)(40,99,42,110)(73,91,88,117)(74,92,81,118)(75,93,82,119)(76,94,83,120)(77,95,84,113)(78,96,85,114)(79,89,86,115)(80,90,87,116), (1,53,68,21)(2,64,69,30)(3,23,70,55)(4,32,71,58)(5,49,72,17)(6,60,65,26)(7,19,66,51)(8,28,67,62)(9,63,127,29)(10,22,128,54)(11,31,121,57)(12,56,122,24)(13,59,123,25)(14,18,124,50)(15,27,125,61)(16,52,126,20)(33,82,43,75)(34,120,44,94)(35,77,45,84)(36,96,46,114)(37,86,47,79)(38,116,48,90)(39,73,41,88)(40,92,42,118)(74,110,81,99)(76,101,83,112)(78,106,85,103)(80,97,87,108)(89,107,115,104)(91,98,117,109)(93,111,119,100)(95,102,113,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,88,72,77)(2,80,65,83)(3,86,66,75)(4,78,67,81)(5,84,68,73)(6,76,69,87)(7,82,70,79)(8,74,71,85)(9,117,123,95)(10,90,124,120)(11,115,125,93)(12,96,126,118)(13,113,127,91)(14,94,128,116)(15,119,121,89)(16,92,122,114)(17,45,53,39)(18,34,54,48)(19,43,55,37)(20,40,56,46)(21,41,49,35)(22,38,50,44)(23,47,51,33)(24,36,52,42)(25,102,63,109)(26,112,64,97)(27,100,57,107)(28,110,58,103)(29,98,59,105)(30,108,60,101)(31,104,61,111)(32,106,62,99) );
G=PermutationGroup([[(1,127,68,9),(2,128,69,10),(3,121,70,11),(4,122,71,12),(5,123,72,13),(6,124,65,14),(7,125,66,15),(8,126,67,16),(17,25,49,59),(18,26,50,60),(19,27,51,61),(20,28,52,62),(21,29,53,63),(22,30,54,64),(23,31,55,57),(24,32,56,58),(33,100,43,111),(34,101,44,112),(35,102,45,105),(36,103,46,106),(37,104,47,107),(38,97,48,108),(39,98,41,109),(40,99,42,110),(73,91,88,117),(74,92,81,118),(75,93,82,119),(76,94,83,120),(77,95,84,113),(78,96,85,114),(79,89,86,115),(80,90,87,116)], [(1,53,68,21),(2,64,69,30),(3,23,70,55),(4,32,71,58),(5,49,72,17),(6,60,65,26),(7,19,66,51),(8,28,67,62),(9,63,127,29),(10,22,128,54),(11,31,121,57),(12,56,122,24),(13,59,123,25),(14,18,124,50),(15,27,125,61),(16,52,126,20),(33,82,43,75),(34,120,44,94),(35,77,45,84),(36,96,46,114),(37,86,47,79),(38,116,48,90),(39,73,41,88),(40,92,42,118),(74,110,81,99),(76,101,83,112),(78,106,85,103),(80,97,87,108),(89,107,115,104),(91,98,117,109),(93,111,119,100),(95,102,113,105)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,88,72,77),(2,80,65,83),(3,86,66,75),(4,78,67,81),(5,84,68,73),(6,76,69,87),(7,82,70,79),(8,74,71,85),(9,117,123,95),(10,90,124,120),(11,115,125,93),(12,96,126,118),(13,113,127,91),(14,94,128,116),(15,119,121,89),(16,92,122,114),(17,45,53,39),(18,34,54,48),(19,43,55,37),(20,40,56,46),(21,41,49,35),(22,38,50,44),(23,47,51,33),(24,36,52,42),(25,102,63,109),(26,112,64,97),(27,100,57,107),(28,110,58,103),(29,98,59,105),(30,108,60,101),(31,104,61,111),(32,106,62,99)]])
Matrix representation of Q8.Q16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 12 | 12 |
0 | 0 | 12 | 5 |
11 | 11 | 0 | 0 |
3 | 0 | 0 | 0 |
0 | 0 | 5 | 12 |
0 | 0 | 5 | 5 |
10 | 10 | 0 | 0 |
12 | 7 | 0 | 0 |
0 | 0 | 14 | 14 |
0 | 0 | 14 | 3 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[16,0,0,0,0,16,0,0,0,0,12,12,0,0,12,5],[11,3,0,0,11,0,0,0,0,0,5,5,0,0,12,5],[10,12,0,0,10,7,0,0,0,0,14,14,0,0,14,3] >;
Q8.Q16 in GAP, Magma, Sage, TeX
Q_8.Q_{16}
% in TeX
G:=Group("Q8.Q16");
// GroupNames label
G:=SmallGroup(128,368);
// by ID
G=gap.SmallGroup(128,368);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,456,422,184,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=a^2*c^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d^-1=a^2*c^-1>;
// generators/relations
Export