Copied to
clipboard

G = Q8.Q16order 128 = 27

The non-split extension by Q8 of Q16 acting via Q16/Q8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q8.3Q16, C42.197C23, C4⋊C4.27D4, Q8⋊C8.4C2, C4⋊C8.8C22, (C2×Q8).47D4, C4.17(C2×Q16), C4.57(C4○D8), (C4×C8).19C22, Q83Q8.1C2, C4.Q16.2C2, C4⋊Q8.18C22, C4.10D8.1C2, C4.SD16.1C2, (C4×Q8).28C22, C4.61(C8.C22), C2.17(D4.8D4), C2.17(D4.7D4), C22.163C22≀C2, C2.12(C22⋊Q16), (C2×C4).954(C2×D4), SmallGroup(128,368)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — Q8.Q16
C1C2C22C2×C4C42C4×Q8Q83Q8 — Q8.Q16
C1C22C42 — Q8.Q16
C1C22C42 — Q8.Q16
C1C22C22C42 — Q8.Q16

Generators and relations for Q8.Q16
 G = < a,b,c,d | a4=c8=1, b2=a2, d2=a2c4, bab-1=dad-1=a-1, ac=ca, cbc-1=a-1b, bd=db, dcd-1=a2c-1 >

Subgroups: 184 in 94 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C2.D8, C4×Q8, C4×Q8, C42.C2, C4⋊Q8, C4⋊Q8, Q8⋊C8, C4.10D8, C4.Q16, C4.SD16, Q83Q8, Q8.Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C22≀C2, C2×Q16, C4○D8, C8.C22, C22⋊Q16, D4.7D4, D4.8D4, Q8.Q16

Character table of Q8.Q16

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J4K4L4M4N8A8B8C8D8E8F8G8H
 size 111122224444488881644448888
ρ111111111111111111111111111    trivial
ρ211111111-111-111-1-1-11-1-1-1-111-1-1    linear of order 2
ρ311111111-111-111-1-1-1-11111-1-111    linear of order 2
ρ411111111111111111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ511111111-11-1-1-1-11-1111111-1-1-1-1    linear of order 2
ρ61111111111-11-1-1-11-11-1-1-1-1-1-111    linear of order 2
ρ71111111111-11-1-1-11-1-1111111-1-1    linear of order 2
ρ811111111-11-1-1-1-11-11-1-1-1-1-11111    linear of order 2
ρ92222-222-22-202000-20000000000    orthogonal lifted from D4
ρ102222-222-2-2-20-200020000000000    orthogonal lifted from D4
ρ112222-2-2-2-202000020-2000000000    orthogonal lifted from D4
ρ122222-2-2-2-2020000-202000000000    orthogonal lifted from D4
ρ1322222-2-220-2202-2000000000000    orthogonal lifted from D4
ρ1422222-2-220-2-20-22000000000000    orthogonal lifted from D4
ρ152-2-22200-20020-20000022-2-200-22    symplectic lifted from Q16, Schur index 2
ρ162-2-22200-200-20200000-2-22200-22    symplectic lifted from Q16, Schur index 2
ρ172-2-22200-20020-200000-2-222002-2    symplectic lifted from Q16, Schur index 2
ρ182-2-22200-200-2020000022-2-2002-2    symplectic lifted from Q16, Schur index 2
ρ1922-2-202-20-2i002i000000-2--2--2-22-200    complex lifted from C4○D8
ρ2022-2-202-202i00-2i000000--2-2-2--22-200    complex lifted from C4○D8
ρ2122-2-202-20-2i002i000000--2-2-2--2-2200    complex lifted from C4○D8
ρ2222-2-202-202i00-2i000000-2--2--2-2-2200    complex lifted from C4○D8
ρ2344-4-40-440000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ244-4-44-4004000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ254-44-400000000000000-2i2i-2i2i0000    complex lifted from D4.8D4
ρ264-44-4000000000000002i-2i2i-2i0000    complex lifted from D4.8D4

Smallest permutation representation of Q8.Q16
Regular action on 128 points
Generators in S128
(1 127 68 9)(2 128 69 10)(3 121 70 11)(4 122 71 12)(5 123 72 13)(6 124 65 14)(7 125 66 15)(8 126 67 16)(17 25 49 59)(18 26 50 60)(19 27 51 61)(20 28 52 62)(21 29 53 63)(22 30 54 64)(23 31 55 57)(24 32 56 58)(33 100 43 111)(34 101 44 112)(35 102 45 105)(36 103 46 106)(37 104 47 107)(38 97 48 108)(39 98 41 109)(40 99 42 110)(73 91 88 117)(74 92 81 118)(75 93 82 119)(76 94 83 120)(77 95 84 113)(78 96 85 114)(79 89 86 115)(80 90 87 116)
(1 53 68 21)(2 64 69 30)(3 23 70 55)(4 32 71 58)(5 49 72 17)(6 60 65 26)(7 19 66 51)(8 28 67 62)(9 63 127 29)(10 22 128 54)(11 31 121 57)(12 56 122 24)(13 59 123 25)(14 18 124 50)(15 27 125 61)(16 52 126 20)(33 82 43 75)(34 120 44 94)(35 77 45 84)(36 96 46 114)(37 86 47 79)(38 116 48 90)(39 73 41 88)(40 92 42 118)(74 110 81 99)(76 101 83 112)(78 106 85 103)(80 97 87 108)(89 107 115 104)(91 98 117 109)(93 111 119 100)(95 102 113 105)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 88 72 77)(2 80 65 83)(3 86 66 75)(4 78 67 81)(5 84 68 73)(6 76 69 87)(7 82 70 79)(8 74 71 85)(9 117 123 95)(10 90 124 120)(11 115 125 93)(12 96 126 118)(13 113 127 91)(14 94 128 116)(15 119 121 89)(16 92 122 114)(17 45 53 39)(18 34 54 48)(19 43 55 37)(20 40 56 46)(21 41 49 35)(22 38 50 44)(23 47 51 33)(24 36 52 42)(25 102 63 109)(26 112 64 97)(27 100 57 107)(28 110 58 103)(29 98 59 105)(30 108 60 101)(31 104 61 111)(32 106 62 99)

G:=sub<Sym(128)| (1,127,68,9)(2,128,69,10)(3,121,70,11)(4,122,71,12)(5,123,72,13)(6,124,65,14)(7,125,66,15)(8,126,67,16)(17,25,49,59)(18,26,50,60)(19,27,51,61)(20,28,52,62)(21,29,53,63)(22,30,54,64)(23,31,55,57)(24,32,56,58)(33,100,43,111)(34,101,44,112)(35,102,45,105)(36,103,46,106)(37,104,47,107)(38,97,48,108)(39,98,41,109)(40,99,42,110)(73,91,88,117)(74,92,81,118)(75,93,82,119)(76,94,83,120)(77,95,84,113)(78,96,85,114)(79,89,86,115)(80,90,87,116), (1,53,68,21)(2,64,69,30)(3,23,70,55)(4,32,71,58)(5,49,72,17)(6,60,65,26)(7,19,66,51)(8,28,67,62)(9,63,127,29)(10,22,128,54)(11,31,121,57)(12,56,122,24)(13,59,123,25)(14,18,124,50)(15,27,125,61)(16,52,126,20)(33,82,43,75)(34,120,44,94)(35,77,45,84)(36,96,46,114)(37,86,47,79)(38,116,48,90)(39,73,41,88)(40,92,42,118)(74,110,81,99)(76,101,83,112)(78,106,85,103)(80,97,87,108)(89,107,115,104)(91,98,117,109)(93,111,119,100)(95,102,113,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,88,72,77)(2,80,65,83)(3,86,66,75)(4,78,67,81)(5,84,68,73)(6,76,69,87)(7,82,70,79)(8,74,71,85)(9,117,123,95)(10,90,124,120)(11,115,125,93)(12,96,126,118)(13,113,127,91)(14,94,128,116)(15,119,121,89)(16,92,122,114)(17,45,53,39)(18,34,54,48)(19,43,55,37)(20,40,56,46)(21,41,49,35)(22,38,50,44)(23,47,51,33)(24,36,52,42)(25,102,63,109)(26,112,64,97)(27,100,57,107)(28,110,58,103)(29,98,59,105)(30,108,60,101)(31,104,61,111)(32,106,62,99)>;

G:=Group( (1,127,68,9)(2,128,69,10)(3,121,70,11)(4,122,71,12)(5,123,72,13)(6,124,65,14)(7,125,66,15)(8,126,67,16)(17,25,49,59)(18,26,50,60)(19,27,51,61)(20,28,52,62)(21,29,53,63)(22,30,54,64)(23,31,55,57)(24,32,56,58)(33,100,43,111)(34,101,44,112)(35,102,45,105)(36,103,46,106)(37,104,47,107)(38,97,48,108)(39,98,41,109)(40,99,42,110)(73,91,88,117)(74,92,81,118)(75,93,82,119)(76,94,83,120)(77,95,84,113)(78,96,85,114)(79,89,86,115)(80,90,87,116), (1,53,68,21)(2,64,69,30)(3,23,70,55)(4,32,71,58)(5,49,72,17)(6,60,65,26)(7,19,66,51)(8,28,67,62)(9,63,127,29)(10,22,128,54)(11,31,121,57)(12,56,122,24)(13,59,123,25)(14,18,124,50)(15,27,125,61)(16,52,126,20)(33,82,43,75)(34,120,44,94)(35,77,45,84)(36,96,46,114)(37,86,47,79)(38,116,48,90)(39,73,41,88)(40,92,42,118)(74,110,81,99)(76,101,83,112)(78,106,85,103)(80,97,87,108)(89,107,115,104)(91,98,117,109)(93,111,119,100)(95,102,113,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,88,72,77)(2,80,65,83)(3,86,66,75)(4,78,67,81)(5,84,68,73)(6,76,69,87)(7,82,70,79)(8,74,71,85)(9,117,123,95)(10,90,124,120)(11,115,125,93)(12,96,126,118)(13,113,127,91)(14,94,128,116)(15,119,121,89)(16,92,122,114)(17,45,53,39)(18,34,54,48)(19,43,55,37)(20,40,56,46)(21,41,49,35)(22,38,50,44)(23,47,51,33)(24,36,52,42)(25,102,63,109)(26,112,64,97)(27,100,57,107)(28,110,58,103)(29,98,59,105)(30,108,60,101)(31,104,61,111)(32,106,62,99) );

G=PermutationGroup([[(1,127,68,9),(2,128,69,10),(3,121,70,11),(4,122,71,12),(5,123,72,13),(6,124,65,14),(7,125,66,15),(8,126,67,16),(17,25,49,59),(18,26,50,60),(19,27,51,61),(20,28,52,62),(21,29,53,63),(22,30,54,64),(23,31,55,57),(24,32,56,58),(33,100,43,111),(34,101,44,112),(35,102,45,105),(36,103,46,106),(37,104,47,107),(38,97,48,108),(39,98,41,109),(40,99,42,110),(73,91,88,117),(74,92,81,118),(75,93,82,119),(76,94,83,120),(77,95,84,113),(78,96,85,114),(79,89,86,115),(80,90,87,116)], [(1,53,68,21),(2,64,69,30),(3,23,70,55),(4,32,71,58),(5,49,72,17),(6,60,65,26),(7,19,66,51),(8,28,67,62),(9,63,127,29),(10,22,128,54),(11,31,121,57),(12,56,122,24),(13,59,123,25),(14,18,124,50),(15,27,125,61),(16,52,126,20),(33,82,43,75),(34,120,44,94),(35,77,45,84),(36,96,46,114),(37,86,47,79),(38,116,48,90),(39,73,41,88),(40,92,42,118),(74,110,81,99),(76,101,83,112),(78,106,85,103),(80,97,87,108),(89,107,115,104),(91,98,117,109),(93,111,119,100),(95,102,113,105)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,88,72,77),(2,80,65,83),(3,86,66,75),(4,78,67,81),(5,84,68,73),(6,76,69,87),(7,82,70,79),(8,74,71,85),(9,117,123,95),(10,90,124,120),(11,115,125,93),(12,96,126,118),(13,113,127,91),(14,94,128,116),(15,119,121,89),(16,92,122,114),(17,45,53,39),(18,34,54,48),(19,43,55,37),(20,40,56,46),(21,41,49,35),(22,38,50,44),(23,47,51,33),(24,36,52,42),(25,102,63,109),(26,112,64,97),(27,100,57,107),(28,110,58,103),(29,98,59,105),(30,108,60,101),(31,104,61,111),(32,106,62,99)]])

Matrix representation of Q8.Q16 in GL4(𝔽17) generated by

1000
0100
0001
00160
,
16000
01600
001212
00125
,
111100
3000
00512
0055
,
101000
12700
001414
00143
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[16,0,0,0,0,16,0,0,0,0,12,12,0,0,12,5],[11,3,0,0,11,0,0,0,0,0,5,5,0,0,12,5],[10,12,0,0,10,7,0,0,0,0,14,14,0,0,14,3] >;

Q8.Q16 in GAP, Magma, Sage, TeX

Q_8.Q_{16}
% in TeX

G:=Group("Q8.Q16");
// GroupNames label

G:=SmallGroup(128,368);
// by ID

G=gap.SmallGroup(128,368);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,456,422,184,1123,570,521,136,2804,1411,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=a^2*c^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

Export

Character table of Q8.Q16 in TeX

׿
×
𝔽