p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.4SD16, C42.196C23, D4⋊C8⋊19C2, C4⋊C4.26D4, (C2×D4).49D4, D4⋊2Q8⋊32C2, D4⋊6D4.1C2, C4.34(C4○D8), (C4×C8).18C22, C4.SD16⋊1C2, C4.29(C2×SD16), C4⋊Q8.17C22, C4.10D8⋊19C2, C4⋊C8.164C22, C4.35(C8⋊C22), (C4×D4).28C22, C4.34(C8.C22), C2.16(D4.8D4), C2.16(D4.7D4), C22.162C22≀C2, C2.12(C22⋊SD16), (C2×C4).953(C2×D4), SmallGroup(128,367)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.SD16
G = < a,b,c,d | a4=b2=c8=1, d2=a2, bab=dad-1=a-1, ac=ca, cbc-1=a-1b, dbd-1=a2b, dcd-1=a2c3 >
Subgroups: 280 in 117 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2×C4⋊C4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C4⋊Q8, C2×C4○D4, D4⋊C8, C4.10D8, D4⋊2Q8, C4.SD16, D4⋊6D4, D4.SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C22≀C2, C2×SD16, C4○D8, C8⋊C22, C8.C22, C22⋊SD16, D4.7D4, D4.8D4, D4.SD16
Character table of D4.SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√-2 | 0 | √-2 | 0 | complex lifted from C4○D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √-2 | 0 | -√-2 | 0 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | 0 | √-2 | 0 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | 0 | √-2 | 0 | -√-2 | complex lifted from SD16 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | 0 | -√-2 | 0 | √-2 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√-2 | 0 | √-2 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | 0 | -√-2 | 0 | √-2 | complex lifted from SD16 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √-2 | 0 | -√-2 | 0 | complex lifted from C4○D8 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.8D4 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.8D4 |
(1 38 59 49)(2 39 60 50)(3 40 61 51)(4 33 62 52)(5 34 63 53)(6 35 64 54)(7 36 57 55)(8 37 58 56)(9 31 47 18)(10 32 48 19)(11 25 41 20)(12 26 42 21)(13 27 43 22)(14 28 44 23)(15 29 45 24)(16 30 46 17)
(1 43)(2 23)(3 15)(4 30)(5 47)(6 19)(7 11)(8 26)(9 63)(10 54)(12 37)(13 59)(14 50)(16 33)(17 62)(18 53)(20 36)(21 58)(22 49)(24 40)(25 55)(27 38)(28 60)(29 51)(31 34)(32 64)(35 48)(39 44)(41 57)(42 56)(45 61)(46 52)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 24 59 29)(2 32 60 19)(3 22 61 27)(4 30 62 17)(5 20 63 25)(6 28 64 23)(7 18 57 31)(8 26 58 21)(9 36 47 55)(10 50 48 39)(11 34 41 53)(12 56 42 37)(13 40 43 51)(14 54 44 35)(15 38 45 49)(16 52 46 33)
G:=sub<Sym(64)| (1,38,59,49)(2,39,60,50)(3,40,61,51)(4,33,62,52)(5,34,63,53)(6,35,64,54)(7,36,57,55)(8,37,58,56)(9,31,47,18)(10,32,48,19)(11,25,41,20)(12,26,42,21)(13,27,43,22)(14,28,44,23)(15,29,45,24)(16,30,46,17), (1,43)(2,23)(3,15)(4,30)(5,47)(6,19)(7,11)(8,26)(9,63)(10,54)(12,37)(13,59)(14,50)(16,33)(17,62)(18,53)(20,36)(21,58)(22,49)(24,40)(25,55)(27,38)(28,60)(29,51)(31,34)(32,64)(35,48)(39,44)(41,57)(42,56)(45,61)(46,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,24,59,29)(2,32,60,19)(3,22,61,27)(4,30,62,17)(5,20,63,25)(6,28,64,23)(7,18,57,31)(8,26,58,21)(9,36,47,55)(10,50,48,39)(11,34,41,53)(12,56,42,37)(13,40,43,51)(14,54,44,35)(15,38,45,49)(16,52,46,33)>;
G:=Group( (1,38,59,49)(2,39,60,50)(3,40,61,51)(4,33,62,52)(5,34,63,53)(6,35,64,54)(7,36,57,55)(8,37,58,56)(9,31,47,18)(10,32,48,19)(11,25,41,20)(12,26,42,21)(13,27,43,22)(14,28,44,23)(15,29,45,24)(16,30,46,17), (1,43)(2,23)(3,15)(4,30)(5,47)(6,19)(7,11)(8,26)(9,63)(10,54)(12,37)(13,59)(14,50)(16,33)(17,62)(18,53)(20,36)(21,58)(22,49)(24,40)(25,55)(27,38)(28,60)(29,51)(31,34)(32,64)(35,48)(39,44)(41,57)(42,56)(45,61)(46,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,24,59,29)(2,32,60,19)(3,22,61,27)(4,30,62,17)(5,20,63,25)(6,28,64,23)(7,18,57,31)(8,26,58,21)(9,36,47,55)(10,50,48,39)(11,34,41,53)(12,56,42,37)(13,40,43,51)(14,54,44,35)(15,38,45,49)(16,52,46,33) );
G=PermutationGroup([[(1,38,59,49),(2,39,60,50),(3,40,61,51),(4,33,62,52),(5,34,63,53),(6,35,64,54),(7,36,57,55),(8,37,58,56),(9,31,47,18),(10,32,48,19),(11,25,41,20),(12,26,42,21),(13,27,43,22),(14,28,44,23),(15,29,45,24),(16,30,46,17)], [(1,43),(2,23),(3,15),(4,30),(5,47),(6,19),(7,11),(8,26),(9,63),(10,54),(12,37),(13,59),(14,50),(16,33),(17,62),(18,53),(20,36),(21,58),(22,49),(24,40),(25,55),(27,38),(28,60),(29,51),(31,34),(32,64),(35,48),(39,44),(41,57),(42,56),(45,61),(46,52)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,24,59,29),(2,32,60,19),(3,22,61,27),(4,30,62,17),(5,20,63,25),(6,28,64,23),(7,18,57,31),(8,26,58,21),(9,36,47,55),(10,50,48,39),(11,34,41,53),(12,56,42,37),(13,40,43,51),(14,54,44,35),(15,38,45,49),(16,52,46,33)]])
Matrix representation of D4.SD16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 13 |
0 | 0 | 4 | 0 |
2 | 7 | 0 | 0 |
0 | 8 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 9 |
13 | 15 | 0 | 0 |
16 | 4 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 4 | 0 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,13,0,0,0,0,4],[1,0,0,0,0,1,0,0,0,0,0,4,0,0,13,0],[2,0,0,0,7,8,0,0,0,0,2,0,0,0,0,9],[13,16,0,0,15,4,0,0,0,0,0,4,0,0,4,0] >;
D4.SD16 in GAP, Magma, Sage, TeX
D_4.{\rm SD}_{16}
% in TeX
G:=Group("D4.SD16");
// GroupNames label
G:=SmallGroup(128,367);
// by ID
G=gap.SmallGroup(128,367);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,456,422,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b,d*b*d^-1=a^2*b,d*c*d^-1=a^2*c^3>;
// generators/relations
Export