extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4⋊1D4)⋊1C2 = C42⋊9D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 16 | | (C2xC4:1D4):1C2 | 128,734 |
(C2×C4⋊1D4)⋊2C2 = (C2×C4)⋊2D8 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):2C2 | 128,743 |
(C2×C4⋊1D4)⋊3C2 = C23.328C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):3C2 | 128,1160 |
(C2×C4⋊1D4)⋊4C2 = C24.263C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):4C2 | 128,1163 |
(C2×C4⋊1D4)⋊5C2 = C23.333C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):5C2 | 128,1165 |
(C2×C4⋊1D4)⋊6C2 = C42⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):6C2 | 128,1273 |
(C2×C4⋊1D4)⋊7C2 = C42⋊27D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):7C2 | 128,1351 |
(C2×C4⋊1D4)⋊8C2 = C42⋊31D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):8C2 | 128,1389 |
(C2×C4⋊1D4)⋊9C2 = C23.569C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):9C2 | 128,1401 |
(C2×C4⋊1D4)⋊10C2 = C23.573C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):10C2 | 128,1405 |
(C2×C4⋊1D4)⋊11C2 = C42⋊33D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):11C2 | 128,1550 |
(C2×C4⋊1D4)⋊12C2 = C42⋊47D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):12C2 | 128,1588 |
(C2×C4⋊1D4)⋊13C2 = C43⋊15C2 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):13C2 | 128,1599 |
(C2×C4⋊1D4)⋊14C2 = C2×D4⋊4D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 16 | | (C2xC4:1D4):14C2 | 128,1746 |
(C2×C4⋊1D4)⋊15C2 = C2×C4⋊D8 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):15C2 | 128,1761 |
(C2×C4⋊1D4)⋊16C2 = C42.444D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):16C2 | 128,1770 |
(C2×C4⋊1D4)⋊17C2 = C2×C8⋊4D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):17C2 | 128,1876 |
(C2×C4⋊1D4)⋊18C2 = C2×C8⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):18C2 | 128,1880 |
(C2×C4⋊1D4)⋊19C2 = M4(2)⋊7D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):19C2 | 128,1883 |
(C2×C4⋊1D4)⋊20C2 = C42.263D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):20C2 | 128,1937 |
(C2×C4⋊1D4)⋊21C2 = C42.275D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):21C2 | 128,1949 |
(C2×C4⋊1D4)⋊22C2 = C2×C22.29C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):22C2 | 128,2178 |
(C2×C4⋊1D4)⋊23C2 = C2×C22.34C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):23C2 | 128,2184 |
(C2×C4⋊1D4)⋊24C2 = C2×D42 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):24C2 | 128,2194 |
(C2×C4⋊1D4)⋊25C2 = C2×Q8⋊6D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4):25C2 | 128,2199 |
(C2×C4⋊1D4)⋊26C2 = C22.87C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):26C2 | 128,2230 |
(C2×C4⋊1D4)⋊27C2 = C22.97C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):27C2 | 128,2240 |
(C2×C4⋊1D4)⋊28C2 = C2×C22.54C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):28C2 | 128,2257 |
(C2×C4⋊1D4)⋊29C2 = C22.132C25 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4):29C2 | 128,2275 |
(C2×C4⋊1D4)⋊30C2 = C2×C22.26C24 | φ: trivial image | 64 | | (C2xC4:1D4):30C2 | 128,2174 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4⋊1D4).1C2 = C2×C4.D8 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).1C2 | 128,270 |
(C2×C4⋊1D4).2C2 = C42.413D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4).2C2 | 128,277 |
(C2×C4⋊1D4).3C2 = C42.82D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4).3C2 | 128,287 |
(C2×C4⋊1D4).4C2 = C24.24D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 16 | | (C2xC4:1D4).4C2 | 128,619 |
(C2×C4⋊1D4).5C2 = C42.432D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).5C2 | 128,689 |
(C2×C4⋊1D4).6C2 = C42.112D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).6C2 | 128,693 |
(C2×C4⋊1D4).7C2 = M4(2)⋊12D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4).7C2 | 128,697 |
(C2×C4⋊1D4).8C2 = C42.118D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).8C2 | 128,714 |
(C2×C4⋊1D4).9C2 = (C2×C8)⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).9C2 | 128,746 |
(C2×C4⋊1D4).10C2 = C4⋊C4⋊7D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).10C2 | 128,773 |
(C2×C4⋊1D4).11C2 = C2×C42⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 16 | | (C2xC4:1D4).11C2 | 128,856 |
(C2×C4⋊1D4).12C2 = C42⋊14D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).12C2 | 128,1060 |
(C2×C4⋊1D4).13C2 = C24.219C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).13C2 | 128,1098 |
(C2×C4⋊1D4).14C2 = C23.262C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).14C2 | 128,1112 |
(C2×C4⋊1D4).15C2 = C23.345C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).15C2 | 128,1177 |
(C2×C4⋊1D4).16C2 = C42⋊21D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).16C2 | 128,1276 |
(C2×C4⋊1D4).17C2 = C42.171D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).17C2 | 128,1280 |
(C2×C4⋊1D4).18C2 = C42.194D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).18C2 | 128,1373 |
(C2×C4⋊1D4).19C2 = C24.411C23 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).19C2 | 128,1441 |
(C2×C4⋊1D4).20C2 = C43⋊12C2 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).20C2 | 128,1590 |
(C2×C4⋊1D4).21C2 = C2×C4⋊SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).21C2 | 128,1764 |
(C2×C4⋊1D4).22C2 = C2×C4.4D8 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).22C2 | 128,1860 |
(C2×C4⋊1D4).23C2 = C2×C42.29C22 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).23C2 | 128,1865 |
(C2×C4⋊1D4).24C2 = C42.240D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4).24C2 | 128,1870 |
(C2×C4⋊1D4).25C2 = C2×C8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).25C2 | 128,1875 |
(C2×C4⋊1D4).26C2 = C42.266D4 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 32 | | (C2xC4:1D4).26C2 | 128,1940 |
(C2×C4⋊1D4).27C2 = C2×C22.53C24 | φ: C2/C1 → C2 ⊆ Out C2×C4⋊1D4 | 64 | | (C2xC4:1D4).27C2 | 128,2211 |
(C2×C4⋊1D4).28C2 = C4×C4⋊1D4 | φ: trivial image | 64 | | (C2xC4:1D4).28C2 | 128,1038 |