Copied to
clipboard

G = C2xC8:5D4order 128 = 27

Direct product of C2 and C8:5D4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xC8:5D4, C42.356D4, C42.710C23, (C2xC8):32D4, C8:11(C2xD4), C4:1(C2xSD16), (C4xC8):77C22, (C2xC4):10SD16, C4:Q8:65C22, C4.1(C22xD4), C4.11(C4:1D4), (C2xC4).341C24, (C2xC8).592C23, (C22xC4).611D4, C23.876(C2xD4), (C2xQ8).96C23, (C22xSD16):26C2, (C2xSD16):77C22, (C2xD4).108C23, C22.88(C2xSD16), C2.18(C22xSD16), C4:1D4.150C22, C22.47(C4:1D4), (C22xC8).566C22, C22.601(C22xD4), (C2xC42).1125C22, (C22xC4).1556C23, (C22xD4).371C22, (C22xQ8).304C22, (C2xC4xC8):35C2, (C2xC4:Q8):37C2, (C2xC4).851(C2xD4), C2.20(C2xC4:1D4), (C2xC4:1D4).25C2, SmallGroup(128,1875)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C2xC8:5D4
C1C2C22C2xC4C22xC4C2xC42C2xC4xC8 — C2xC8:5D4
C1C2C2xC4 — C2xC8:5D4
C1C23C2xC42 — C2xC8:5D4
C1C2C2C2xC4 — C2xC8:5D4

Generators and relations for C2xC8:5D4
 G = < a,b,c,d | a2=b8=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b3, dcd=c-1 >

Subgroups: 724 in 328 conjugacy classes, 132 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C42, C4:C4, C2xC8, SD16, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C24, C4xC8, C2xC42, C2xC4:C4, C4:1D4, C4:1D4, C4:Q8, C4:Q8, C22xC8, C2xSD16, C2xSD16, C22xD4, C22xD4, C22xQ8, C2xC4xC8, C8:5D4, C2xC4:1D4, C2xC4:Q8, C22xSD16, C2xC8:5D4
Quotients: C1, C2, C22, D4, C23, SD16, C2xD4, C24, C4:1D4, C2xSD16, C22xD4, C8:5D4, C2xC4:1D4, C22xSD16, C2xC8:5D4

Smallest permutation representation of C2xC8:5D4
On 64 points
Generators in S64
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 39)(10 40)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 62)(18 63)(19 64)(20 57)(21 58)(22 59)(23 60)(24 61)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 26 63 13)(2 27 64 14)(3 28 57 15)(4 29 58 16)(5 30 59 9)(6 31 60 10)(7 32 61 11)(8 25 62 12)(17 34 56 42)(18 35 49 43)(19 36 50 44)(20 37 51 45)(21 38 52 46)(22 39 53 47)(23 40 54 48)(24 33 55 41)
(1 13)(2 16)(3 11)(4 14)(5 9)(6 12)(7 15)(8 10)(17 48)(18 43)(19 46)(20 41)(21 44)(22 47)(23 42)(24 45)(25 60)(26 63)(27 58)(28 61)(29 64)(30 59)(31 62)(32 57)(33 51)(34 54)(35 49)(36 52)(37 55)(38 50)(39 53)(40 56)

G:=sub<Sym(64)| (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,39)(10,40)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,62)(18,63)(19,64)(20,57)(21,58)(22,59)(23,60)(24,61)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,26,63,13)(2,27,64,14)(3,28,57,15)(4,29,58,16)(5,30,59,9)(6,31,60,10)(7,32,61,11)(8,25,62,12)(17,34,56,42)(18,35,49,43)(19,36,50,44)(20,37,51,45)(21,38,52,46)(22,39,53,47)(23,40,54,48)(24,33,55,41), (1,13)(2,16)(3,11)(4,14)(5,9)(6,12)(7,15)(8,10)(17,48)(18,43)(19,46)(20,41)(21,44)(22,47)(23,42)(24,45)(25,60)(26,63)(27,58)(28,61)(29,64)(30,59)(31,62)(32,57)(33,51)(34,54)(35,49)(36,52)(37,55)(38,50)(39,53)(40,56)>;

G:=Group( (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,39)(10,40)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,62)(18,63)(19,64)(20,57)(21,58)(22,59)(23,60)(24,61)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,26,63,13)(2,27,64,14)(3,28,57,15)(4,29,58,16)(5,30,59,9)(6,31,60,10)(7,32,61,11)(8,25,62,12)(17,34,56,42)(18,35,49,43)(19,36,50,44)(20,37,51,45)(21,38,52,46)(22,39,53,47)(23,40,54,48)(24,33,55,41), (1,13)(2,16)(3,11)(4,14)(5,9)(6,12)(7,15)(8,10)(17,48)(18,43)(19,46)(20,41)(21,44)(22,47)(23,42)(24,45)(25,60)(26,63)(27,58)(28,61)(29,64)(30,59)(31,62)(32,57)(33,51)(34,54)(35,49)(36,52)(37,55)(38,50)(39,53)(40,56) );

G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,39),(10,40),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,62),(18,63),(19,64),(20,57),(21,58),(22,59),(23,60),(24,61),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,26,63,13),(2,27,64,14),(3,28,57,15),(4,29,58,16),(5,30,59,9),(6,31,60,10),(7,32,61,11),(8,25,62,12),(17,34,56,42),(18,35,49,43),(19,36,50,44),(20,37,51,45),(21,38,52,46),(22,39,53,47),(23,40,54,48),(24,33,55,41)], [(1,13),(2,16),(3,11),(4,14),(5,9),(6,12),(7,15),(8,10),(17,48),(18,43),(19,46),(20,41),(21,44),(22,47),(23,42),(24,45),(25,60),(26,63),(27,58),(28,61),(29,64),(30,59),(31,62),(32,57),(33,51),(34,54),(35,49),(36,52),(37,55),(38,50),(39,53),(40,56)]])

44 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4L4M4N4O4P8A···8P
order12···222224···444448···8
size11···188882···288882···2

44 irreducible representations

dim1111112222
type+++++++++
imageC1C2C2C2C2C2D4D4D4SD16
kernelC2xC8:5D4C2xC4xC8C8:5D4C2xC4:1D4C2xC4:Q8C22xSD16C42C2xC8C22xC4C2xC4
# reps11811428216

Matrix representation of C2xC8:5D4 in GL6(F17)

1600000
0160000
0016000
0001600
0000160
0000016
,
010000
1600000
001000
000100
0000125
00001212
,
1600000
0160000
0011500
0011600
000010
000001
,
1600000
010000
0011500
0001600
000010
0000016

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,5,12],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,0,0,0,15,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,15,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16] >;

C2xC8:5D4 in GAP, Magma, Sage, TeX

C_2\times C_8\rtimes_5D_4
% in TeX

G:=Group("C2xC8:5D4");
// GroupNames label

G:=SmallGroup(128,1875);
// by ID

G=gap.SmallGroup(128,1875);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,184,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^3,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<