Extensions 1→N→G→Q→1 with N=M5(2) and Q=C4

Direct product G=N×Q with N=M5(2) and Q=C4
dρLabelID
C4×M5(2)64C4xM5(2)128,839

Semidirect products G=N:Q with N=M5(2) and Q=C4
extensionφ:Q→Out NdρLabelID
M5(2)⋊1C4 = M5(2)⋊1C4φ: C4/C2C2 ⊆ Out M5(2)64M5(2):1C4128,891
M5(2)⋊2C4 = C2×C8.Q8φ: C4/C2C2 ⊆ Out M5(2)32M5(2):2C4128,886
M5(2)⋊3C4 = M5(2)⋊3C4φ: C4/C2C2 ⊆ Out M5(2)324M5(2):3C4128,887
M5(2)⋊4C4 = C42.7C8φ: C4/C2C2 ⊆ Out M5(2)32M5(2):4C4128,108
M5(2)⋊5C4 = M5(2)⋊C4φ: C4/C2C2 ⊆ Out M5(2)64M5(2):5C4128,109
M5(2)⋊6C4 = M4(2).C8φ: C4/C2C2 ⊆ Out M5(2)324M5(2):6C4128,110
M5(2)⋊7C4 = M5(2)⋊7C4φ: C4/C2C2 ⊆ Out M5(2)64M5(2):7C4128,111
M5(2)⋊8C4 = C8.C42φ: C4/C2C2 ⊆ Out M5(2)32M5(2):8C4128,118
M5(2)⋊9C4 = C8.2C42φ: C4/C2C2 ⊆ Out M5(2)64M5(2):9C4128,119
M5(2)⋊10C4 = C8.4C42φ: C4/C2C2 ⊆ Out M5(2)324M5(2):10C4128,121
M5(2)⋊11C4 = C2×C16⋊C4φ: C4/C2C2 ⊆ Out M5(2)32M5(2):11C4128,841
M5(2)⋊12C4 = C8.23C42φ: C4/C2C2 ⊆ Out M5(2)324M5(2):12C4128,842
M5(2)⋊13C4 = C162M5(2)φ: trivial image64M5(2):13C4128,840

Non-split extensions G=N.Q with N=M5(2) and Q=C4
extensionφ:Q→Out NdρLabelID
M5(2).1C4 = M5(2).1C4φ: C4/C2C2 ⊆ Out M5(2)324M5(2).1C4128,893
M5(2).2C4 = M5(2).C4φ: C4/C2C2 ⊆ Out M5(2)324M5(2).2C4128,120
M5(2).3C4 = D4.C16φ: C4/C2C2 ⊆ Out M5(2)642M5(2).3C4128,133
M5(2).4C4 = D4○C32φ: trivial image642M5(2).4C4128,990

׿
×
𝔽