Copied to
clipboard

G = M5(2).C4order 128 = 27

2nd non-split extension by M5(2) of C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C8.3C42, C23.6Q16, M5(2).2C4, (C2xC8).7Q8, C8.14(C4:C4), (C2xC4).124D8, (C2xC8).354D4, C4.4(C4.Q8), C8.C4.5C4, (C2xC4).23SD16, C8.43(C22:C4), (C22xC4).194D4, C4.51(D4:C4), C22.4(C2.D8), (C2xM5(2)).16C2, C4.9(C2.C42), (C22xC8).207C22, C22.4(Q8:C4), C2.18(C22.4Q16), (C2xC8).54(C2xC4), (C2xC4).30(C4:C4), (C2xC8.C4).6C2, (C2xC4).232(C22:C4), SmallGroup(128,120)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — M5(2).C4
C1C2C4C8C2xC8C22xC8C2xM5(2) — M5(2).C4
C1C2C4C8 — M5(2).C4
C1C4C22xC4C22xC8 — M5(2).C4
C1C2C2C2C2C4C4C22xC8 — M5(2).C4

Generators and relations for M5(2).C4
 G = < a,b,c | a16=b2=1, c4=a8, bab=a9, cac-1=a7b, cbc-1=a8b >

Subgroups: 104 in 62 conjugacy classes, 38 normal (32 characteristic)
C1, C2, C2, C4, C22, C22, C8, C8, C2xC4, C23, C16, C2xC8, C2xC8, M4(2), C22xC4, C8.C4, C8.C4, C2xC16, M5(2), M5(2), C22xC8, C2xM4(2), C2xC8.C4, C2xM5(2), M5(2).C4
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C42, C22:C4, C4:C4, D8, SD16, Q16, C2.C42, D4:C4, Q8:C4, C4.Q8, C2.D8, C22.4Q16, M5(2).C4

Smallest permutation representation of M5(2).C4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 9)(3 11)(5 13)(7 15)(17 25)(19 27)(21 29)(23 31)
(1 28 13 32 9 20 5 24)(2 27 14 31 10 19 6 23)(3 18 15 22 11 26 7 30)(4 17 16 21 12 25 8 29)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31), (1,28,13,32,9,20,5,24)(2,27,14,31,10,19,6,23)(3,18,15,22,11,26,7,30)(4,17,16,21,12,25,8,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31), (1,28,13,32,9,20,5,24)(2,27,14,31,10,19,6,23)(3,18,15,22,11,26,7,30)(4,17,16,21,12,25,8,29) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,9),(3,11),(5,13),(7,15),(17,25),(19,27),(21,29),(23,31)], [(1,28,13,32,9,20,5,24),(2,27,14,31,10,19,6,23),(3,18,15,22,11,26,7,30),(4,17,16,21,12,25,8,29)]])

32 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E8A8B8C8D8E8F8G···8N16A···16H
order12222444448888888···816···16
size11222112222222448···84···4

32 irreducible representations

dim111112222224
type++++-++-
imageC1C2C2C4C4D4Q8D4D8SD16Q16M5(2).C4
kernelM5(2).C4C2xC8.C4C2xM5(2)C8.C4M5(2)C2xC8C2xC8C22xC4C2xC4C2xC4C23C1
# reps121842112424

Matrix representation of M5(2).C4 in GL4(F17) generated by

01600
15000
0008
0010
,
16000
0100
0010
00016
,
0010
0001
13000
01300
G:=sub<GL(4,GF(17))| [0,15,0,0,16,0,0,0,0,0,0,1,0,0,8,0],[16,0,0,0,0,1,0,0,0,0,1,0,0,0,0,16],[0,0,13,0,0,0,0,13,1,0,0,0,0,1,0,0] >;

M5(2).C4 in GAP, Magma, Sage, TeX

M_5(2).C_4
% in TeX

G:=Group("M5(2).C4");
// GroupNames label

G:=SmallGroup(128,120);
// by ID

G=gap.SmallGroup(128,120);
# by ID

G:=PCGroup([7,-2,2,-2,2,2,-2,-2,56,85,120,758,723,520,248,1684,102,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^16=b^2=1,c^4=a^8,b*a*b=a^9,c*a*c^-1=a^7*b,c*b*c^-1=a^8*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<