Extensions 1→N→G→Q→1 with N=SD16⋊C4 and Q=C2

Direct product G=N×Q with N=SD16⋊C4 and Q=C2
dρLabelID
C2×SD16⋊C464C2xSD16:C4128,1672

Semidirect products G=N:Q with N=SD16⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
SD16⋊C41C2 = C42.275C23φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:1C2128,1678
SD16⋊C42C2 = C42.276C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:2C2128,1679
SD16⋊C43C2 = C42.278C23φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:3C2128,1681
SD16⋊C44C2 = C42.280C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:4C2128,1683
SD16⋊C45C2 = C42.228D4φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:5C2128,1842
SD16⋊C46C2 = C42.229D4φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:6C2128,1843
SD16⋊C47C2 = C42.230D4φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:7C2128,1844
SD16⋊C48C2 = C42.232D4φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:8C2128,1846
SD16⋊C49C2 = C42.233D4φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:9C2128,1847
SD16⋊C410C2 = C42.234D4φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:10C2128,1848
SD16⋊C411C2 = C42.235D4φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:11C2128,1849
SD16⋊C412C2 = C42.352C23φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:12C2128,1850
SD16⋊C413C2 = C42.353C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:13C2128,1851
SD16⋊C414C2 = C42.354C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:14C2128,1852
SD16⋊C415C2 = C42.355C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:15C2128,1853
SD16⋊C416C2 = C42.357C23φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:16C2128,1855
SD16⋊C417C2 = C42.358C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:17C2128,1856
SD16⋊C418C2 = C42.360C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:18C2128,1858
SD16⋊C419C2 = C42.386C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:19C2128,1906
SD16⋊C420C2 = C42.387C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:20C2128,1907
SD16⋊C421C2 = C42.390C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:21C2128,1910
SD16⋊C422C2 = C42.391C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:22C2128,1911
SD16⋊C423C2 = C42.257D4φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:23C2128,1912
SD16⋊C424C2 = C42.258D4φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:24C2128,1913
SD16⋊C425C2 = C42.259D4φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:25C2128,1914
SD16⋊C426C2 = C42.260D4φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:26C2128,1915
SD16⋊C427C2 = SD16⋊D4φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:27C2128,1997
SD16⋊C428C2 = SD166D4φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:28C2128,1998
SD16⋊C429C2 = SD167D4φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:29C2128,2000
SD16⋊C430C2 = SD168D4φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:30C2128,2001
SD16⋊C431C2 = C42.43C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:31C2128,2040
SD16⋊C432C2 = C42.44C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:32C2128,2041
SD16⋊C433C2 = C42.45C23φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:33C2128,2042
SD16⋊C434C2 = C42.46C23φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:34C2128,2043
SD16⋊C435C2 = C42.49C23φ: C2/C1C2 ⊆ Out SD16⋊C432SD16:C4:35C2128,2046
SD16⋊C436C2 = C42.50C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:36C2128,2047
SD16⋊C437C2 = C42.55C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:37C2128,2052
SD16⋊C438C2 = C42.56C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:38C2128,2053
SD16⋊C439C2 = C42.57C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:39C2128,2075
SD16⋊C440C2 = C42.60C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:40C2128,2078
SD16⋊C441C2 = C42.62C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:41C2128,2080
SD16⋊C442C2 = C42.64C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:42C2128,2082
SD16⋊C443C2 = C42.508C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:43C2128,2099
SD16⋊C444C2 = C42.509C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:44C2128,2100
SD16⋊C445C2 = C42.511C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:45C2128,2102
SD16⋊C446C2 = C42.512C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:46C2128,2103
SD16⋊C447C2 = C42.516C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:47C2128,2107
SD16⋊C448C2 = C42.517C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:48C2128,2108
SD16⋊C449C2 = C42.72C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:49C2128,2129
SD16⋊C450C2 = C42.75C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:50C2128,2132
SD16⋊C451C2 = C42.532C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:51C2128,2134
SD16⋊C452C2 = C42.533C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4:52C2128,2135
SD16⋊C453C2 = C42.383D4φ: trivial image64SD16:C4:53C2128,1675
SD16⋊C454C2 = C4×C8⋊C22φ: trivial image32SD16:C4:54C2128,1676
SD16⋊C455C2 = C4×C8.C22φ: trivial image64SD16:C4:55C2128,1677

Non-split extensions G=N.Q with N=SD16⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
SD16⋊C4.1C2 = C42.513C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4.1C2128,2104
SD16⋊C4.2C2 = C42.518C23φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4.2C2128,2109
SD16⋊C4.3C2 = SD16⋊Q8φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4.3C2128,2117
SD16⋊C4.4C2 = SD162Q8φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4.4C2128,2118
SD16⋊C4.5C2 = SD163Q8φ: C2/C1C2 ⊆ Out SD16⋊C464SD16:C4.5C2128,2120

׿
×
𝔽