direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2xSD16:C4, C42.202D4, C42.269C23, C8:3(C22xC4), C4.45(C4xD4), SD16:6(C2xC4), (C2xSD16):9C4, Q8:2(C22xC4), C4.17(C23xC4), (C4xQ8):75C22, D4.3(C22xC4), C8:C4:34C22, C2.D8:64C22, C4:C4.357C23, (C2xC4).197C24, (C2xC8).408C23, (C22xC4).707D4, C23.843(C2xD4), C22.118(C4xD4), Q8:C4:90C22, (C4xD4).290C22, (C2xD4).367C23, (C2xQ8).340C23, (C22xSD16).3C2, (C22xC8).436C22, (C2xC42).762C22, C22.141(C22xD4), D4:C4.194C22, C22.107(C8:C22), (C22xC4).1513C23, (C2xSD16).105C22, (C22xD4).557C22, C22.96(C8.C22), (C22xQ8).461C22, (C2xC4xQ8):32C2, C2.57(C2xC4xD4), (C2xC8):11(C2xC4), (C2xC8:C4):4C2, (C2xC4xD4).74C2, C4.5(C2xC4oD4), (C2xQ8):28(C2xC4), (C2xC2.D8):38C2, C2.4(C2xC8:C22), C2.4(C2xC8.C22), (C2xQ8:C4):52C2, (C2xD4).176(C2xC4), (C2xC4).1209(C2xD4), (C2xD4:C4).37C2, (C2xC4).689(C4oD4), (C2xC4:C4).909C22, (C2xC4).468(C22xC4), SmallGroup(128,1672)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2xSD16:C4
G = < a,b,c,d | a2=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd-1=b5, cd=dc >
Subgroups: 476 in 272 conjugacy classes, 148 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C24, C8:C4, D4:C4, Q8:C4, C2.D8, C2xC42, C2xC42, C2xC22:C4, C2xC4:C4, C2xC4:C4, C4xD4, C4xD4, C4xQ8, C4xQ8, C22xC8, C2xSD16, C23xC4, C22xD4, C22xQ8, C2xC8:C4, C2xD4:C4, C2xQ8:C4, C2xC2.D8, SD16:C4, C2xC4xD4, C2xC4xQ8, C22xSD16, C2xSD16:C4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, C24, C4xD4, C8:C22, C8.C22, C23xC4, C22xD4, C2xC4oD4, SD16:C4, C2xC4xD4, C2xC8:C22, C2xC8.C22, C2xSD16:C4
(1 52)(2 53)(3 54)(4 55)(5 56)(6 49)(7 50)(8 51)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 61)(18 62)(19 63)(20 64)(21 57)(22 58)(23 59)(24 60)(25 45)(26 46)(27 47)(28 48)(29 41)(30 42)(31 43)(32 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 59)(2 62)(3 57)(4 60)(5 63)(6 58)(7 61)(8 64)(9 32)(10 27)(11 30)(12 25)(13 28)(14 31)(15 26)(16 29)(17 50)(18 53)(19 56)(20 51)(21 54)(22 49)(23 52)(24 55)(33 44)(34 47)(35 42)(36 45)(37 48)(38 43)(39 46)(40 41)
(1 27 59 10)(2 32 60 15)(3 29 61 12)(4 26 62 9)(5 31 63 14)(6 28 64 11)(7 25 57 16)(8 30 58 13)(17 36 54 41)(18 33 55 46)(19 38 56 43)(20 35 49 48)(21 40 50 45)(22 37 51 42)(23 34 52 47)(24 39 53 44)
G:=sub<Sym(64)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,61)(18,62)(19,63)(20,64)(21,57)(22,58)(23,59)(24,60)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,32)(10,27)(11,30)(12,25)(13,28)(14,31)(15,26)(16,29)(17,50)(18,53)(19,56)(20,51)(21,54)(22,49)(23,52)(24,55)(33,44)(34,47)(35,42)(36,45)(37,48)(38,43)(39,46)(40,41), (1,27,59,10)(2,32,60,15)(3,29,61,12)(4,26,62,9)(5,31,63,14)(6,28,64,11)(7,25,57,16)(8,30,58,13)(17,36,54,41)(18,33,55,46)(19,38,56,43)(20,35,49,48)(21,40,50,45)(22,37,51,42)(23,34,52,47)(24,39,53,44)>;
G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,61)(18,62)(19,63)(20,64)(21,57)(22,58)(23,59)(24,60)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,32)(10,27)(11,30)(12,25)(13,28)(14,31)(15,26)(16,29)(17,50)(18,53)(19,56)(20,51)(21,54)(22,49)(23,52)(24,55)(33,44)(34,47)(35,42)(36,45)(37,48)(38,43)(39,46)(40,41), (1,27,59,10)(2,32,60,15)(3,29,61,12)(4,26,62,9)(5,31,63,14)(6,28,64,11)(7,25,57,16)(8,30,58,13)(17,36,54,41)(18,33,55,46)(19,38,56,43)(20,35,49,48)(21,40,50,45)(22,37,51,42)(23,34,52,47)(24,39,53,44) );
G=PermutationGroup([[(1,52),(2,53),(3,54),(4,55),(5,56),(6,49),(7,50),(8,51),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,61),(18,62),(19,63),(20,64),(21,57),(22,58),(23,59),(24,60),(25,45),(26,46),(27,47),(28,48),(29,41),(30,42),(31,43),(32,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,59),(2,62),(3,57),(4,60),(5,63),(6,58),(7,61),(8,64),(9,32),(10,27),(11,30),(12,25),(13,28),(14,31),(15,26),(16,29),(17,50),(18,53),(19,56),(20,51),(21,54),(22,49),(23,52),(24,55),(33,44),(34,47),(35,42),(36,45),(37,48),(38,43),(39,46),(40,41)], [(1,27,59,10),(2,32,60,15),(3,29,61,12),(4,26,62,9),(5,31,63,14),(6,28,64,11),(7,25,57,16),(8,30,58,13),(17,36,54,41),(18,33,55,46),(19,38,56,43),(20,35,49,48),(21,40,50,45),(22,37,51,42),(23,34,52,47),(24,39,53,44)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4L | 4M | ··· | 4X | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C4oD4 | C8:C22 | C8.C22 |
kernel | C2xSD16:C4 | C2xC8:C4 | C2xD4:C4 | C2xQ8:C4 | C2xC2.D8 | SD16:C4 | C2xC4xD4 | C2xC4xQ8 | C22xSD16 | C2xSD16 | C42 | C22xC4 | C2xC4 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 1 | 16 | 2 | 2 | 4 | 2 | 2 |
Matrix representation of C2xSD16:C4 ►in GL8(F17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 15 | 2 | 15 |
0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
0 | 0 | 0 | 0 | 2 | 15 | 15 | 2 |
0 | 0 | 0 | 0 | 2 | 2 | 15 | 15 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,15,2,15,2,0,0,0,0,2,2,15,15,0,0,0,0,15,2,2,15],[1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;
C2xSD16:C4 in GAP, Magma, Sage, TeX
C_2\times {\rm SD}_{16}\rtimes C_4
% in TeX
G:=Group("C2xSD16:C4");
// GroupNames label
G:=SmallGroup(128,1672);
// by ID
G=gap.SmallGroup(128,1672);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,184,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d^-1=b^5,c*d=d*c>;
// generators/relations