Extensions 1→N→G→Q→1 with N=C4⋊SD16 and Q=C2

Direct product G=N×Q with N=C4⋊SD16 and Q=C2
dρLabelID
C2×C4⋊SD1664C2xC4:SD16128,1764

Semidirect products G=N:Q with N=C4⋊SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C4⋊SD161C2 = C42.212D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:1C2128,1769
C4⋊SD162C2 = C42.444D4φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:2C2128,1770
C4⋊SD163C2 = C42.16C23φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:3C2128,1775
C4⋊SD164C2 = C42.18C23φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:4C2128,1777
C4⋊SD165C2 = C42.230D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:5C2128,1844
C4⋊SD166C2 = C42.233D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:6C2128,1847
C4⋊SD167C2 = C42.353C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:7C2128,1851
C4⋊SD168C2 = C42.360C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:8C2128,1858
C4⋊SD169C2 = C42.274D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:9C2128,1948
C4⋊SD1610C2 = C42.275D4φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:10C2128,1949
C4⋊SD1611C2 = C42.408C23φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:11C2128,1954
C4⋊SD1612C2 = C42.410C23φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:12C2128,1956
C4⋊SD1613C2 = C42.299D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:13C2128,1983
C4⋊SD1614C2 = C42.302D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:14C2128,1986
C4⋊SD1615C2 = C4.2- 1+4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:15C2128,1989
C4⋊SD1616C2 = C42.27C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:16C2128,1992
C4⋊SD1617C2 = SD16⋊D4φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:17C2128,1997
C4⋊SD1618C2 = Q1610D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:18C2128,2003
C4⋊SD1619C2 = SD161D4φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:19C2128,2006
C4⋊SD1620C2 = Q165D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:20C2128,2010
C4⋊SD1621C2 = C42.45C23φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:21C2128,2042
C4⋊SD1622C2 = C42.52C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:22C2128,2049
C4⋊SD1623C2 = C42.473C23φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:23C2128,2056
C4⋊SD1624C2 = C42.482C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:24C2128,2065
C4⋊SD1625C2 = C42.509C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:25C2128,2100
C4⋊SD1626C2 = C42.72C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:26C2128,2129
C4⋊SD1627C2 = C42.74C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:27C2128,2131
C4⋊SD1628C2 = C42.531C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:28C2128,2133
C4⋊SD1629C2 = C42.181C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:29C2128,352
C4⋊SD1630C2 = Q8⋊D8φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:30C2128,353
C4⋊SD1631C2 = D4⋊SD16φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:31C2128,354
C4⋊SD1632C2 = Q83D8φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:32C2128,359
C4⋊SD1633C2 = C42.189C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:33C2128,360
C4⋊SD1634C2 = C813SD16φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:34C2128,400
C4⋊SD1635C2 = C82SD16φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:35C2128,420
C4⋊SD1636C2 = C42.266D4φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:36C2128,1940
C4⋊SD1637C2 = C42.270D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:37C2128,1944
C4⋊SD1638C2 = C42.294D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:38C2128,1978
C4⋊SD1639C2 = C42.295D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:39C2128,1979
C4⋊SD1640C2 = D4×SD16φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:40C2128,2013
C4⋊SD1641C2 = Q1613D4φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:41C2128,2019
C4⋊SD1642C2 = D47SD16φ: C2/C1C2 ⊆ Out C4⋊SD1632C4:SD16:42C2128,2027
C4⋊SD1643C2 = C42.469C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:43C2128,2036
C4⋊SD1644C2 = Q88SD16φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:44C2128,2094
C4⋊SD1645C2 = Q89SD16φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:45C2128,2124
C4⋊SD1646C2 = C42.530C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16:46C2128,2128
C4⋊SD1647C2 = C42.443D4φ: trivial image64C4:SD16:47C2128,1767
C4⋊SD1648C2 = C42.223D4φ: trivial image64C4:SD16:48C2128,1835
C4⋊SD1649C2 = C42.450D4φ: trivial image64C4:SD16:49C2128,1838

Non-split extensions G=N.Q with N=C4⋊SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C4⋊SD16.1C2 = C42.512C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.1C2128,2103
C4⋊SD16.2C2 = C42.516C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.2C2128,2107
C4⋊SD16.3C2 = C42.75C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.3C2128,2132
C4⋊SD16.4C2 = Q8⋊SD16φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.4C2128,355
C4⋊SD16.5C2 = Q86SD16φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.5C2128,358
C4⋊SD16.6C2 = C814SD16φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.6C2128,398
C4⋊SD16.7C2 = Q8.2SD16φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.7C2128,410
C4⋊SD16.8C2 = Q8.2D8φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.8C2128,414
C4⋊SD16.9C2 = C8⋊SD16φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.9C2128,418
C4⋊SD16.10C2 = C42.249C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.10C2128,430
C4⋊SD16.11C2 = C42.253C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.11C2128,434
C4⋊SD16.12C2 = C42.506C23φ: C2/C1C2 ⊆ Out C4⋊SD1664C4:SD16.12C2128,2097

׿
×
𝔽